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Many names

Eigen methods encompass methods such as Empirical Orthogonal
Function analysis (EOF), Singular Value Decomposition analysis
(SVD), Principal Component Analysis (PCA), Factor analysis, ...

... and their variants such as Combined EOF, Combined PCA,
Canonical Correlation Analysis, Complex EOF, Conditional MCA,
etc.

Eigen is a German word which means ...?

"own". It can be translated into "proper", or "characteristic". We
will eventually see why these methods are called as such. It comes
from the mathematics of the methods.
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Outline
1. Introduction
2. Two variate example
3. N-variate case: that's Empirical Orthogonal Functions analysis

(EOF)
4. Two N-variate case: that's Singular Value Decomposition (SVD)
5. Epilogue: EOF analysis by SVD
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1. Introduction

✧ 6 / 57



The Preisendorfer approach:

A multivariate dataset is turned into a set of Principal Components

multivariate = -variable dataset

(univariate , bivariate , etc.)

The Menke approach:

Factor Analysis

a sample is a linear loading of factors

or

the data can be decomposed into modes

✧

N

N = 1 N = 2
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2. Two variate example
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Example

Consider a dataset of monthly means of Sea Surface temperature
(SST), the NOAA Optimum Interpolation (OI) Sea Surface
Temperature (SST) V2 at 1  resolution.

Let's consider the Tropical Pacific Ocean. These plots show the
mean and standard deviation (1982-2016) at each grid point:

✧

∘
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Let's consider only two data points, thus defining a bivariate
dataset:

Correlations with or without seasonal cycle:
 

✧

= SST( E, N), = SST( E, N)X1 160o 18o X2 131o 19o

= 0.60, = −0.27ρX1X2
ρX1X2
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Mean: 

Anomaly: 

Sample covariance: 

Sample (auto-co)variance: 

Sample (cross-)covariance: 

Scatter plot & statistics

Let's consider some simple statistics:

✧

≡ (n)Xj

⎯ ⎯⎯⎯⎯

1

N
∑N

n=1 Xj

(n) = (n) −X ′

j Xj Xj

⎯ ⎯⎯⎯⎯

≡ (n) (n)SXjXk

1

N−1
∑N

n=1 X
′

j X ′

k

,SX1X1
SX2X2

SX1X2
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Standard deviations:

Covariance:

Correlation coefficient:

Regression coefficient (slope):

Scatter plot & statistics

✧

= 1.12SX1X1
‾ ‾‾‾‾√

= 1.27SX2X2
‾ ‾‾‾‾√

=SX1X2
0.93

2

= = 0.60ρ12

SX1X2

SX
1
X
1
SX

2
X
2√

α = = = 0.69
SX1X2

SX
1
X
1

0.93
2

1.12
2
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Matrix notations (1)

To simplify notations, we will use matrices. We define the data
vector and matrices (forgetting the "primes"):

The transpose operation  switches matrix dimensions:

✧

= , = ,X =X1

⎡

⎣

⎢
⎢
⎢
⎢

(1)X1

(2)X1

⋮

(N)X1

⎤

⎦

⎥
⎥
⎥
⎥

X2

⎡

⎣

⎢
⎢
⎢
⎢

(1)X2

(2)X2

⋮

(N)X2

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

(1)X1

(2)X1

⋮

(N)X1

(1)X2

(2)X2

⋮

(N)X2

⎤

⎦

⎥
⎥
⎥
⎥

(. )T

= [ (1), (2),⋯ , (N)]X
T

1 X1 X1 X1
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Matrix notations (2)

With the matrix notation, we can assemble covariance terms into
the sample covariance matrix as:

 is sometimes called the scatter matrix

✧

CˆXX =

=

=

=

[ , [ , ] = X
1

N − 1
X1 X2]

T
X1 X2

1

N − 1
X

T

[ ]
1

N − 1

(1), (2),⋯ , (N)X1 X1 X1

(1), (2),⋯ , (N)X2 X2 X2

⎡

⎣

⎢
⎢
⎢
⎢

(1)X1

(2)X1

⋮

(N)X1

(1)X2

(2)X2

⋮

(N)X2

⎤

⎦

⎥
⎥
⎥
⎥

[ ]1

N − 1

(n) (n), (n) (n)∑N

n=1
X1 X1 ∑N

n=1
X1 X2

(n) (n), (n) (n)∑N

n=1
X2 X1 ∑N

n=1
X2 X2

[ ]
SX1X1

SX2X1

SX1X2

SX2X2

XX
T
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Rotation of frame of reference (1)

Let's consider a new rotated coordinate system for this dataset.
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Define new coordinates: 

In matrix notation: 

Rotated data matrix  data
matrix times rotation matrix: 

The rotation matrix is
orthogonal i.e.  

Rotation of frame of reference (1)

Let's consider a new rotated coordinate system for this dataset.

✧

(n)Y1

(n)Y2

=

=

(n) cos θ + (n) sin θX1 X2

− (n) sin θ + (n) cos θX1 X2

[ , ] = [ , ] [ ]Y1 Y2 X1 X2

cos θ, − sin θ

sin θ, cos θ

≡

Y(θ) = XR(θ)

≡R
−1

R
T

R = R = I ≡ [ ]R
T

R
T

1

0

0

1
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Covariance matrix for rotated
data matrix:

(Auto-co)variance in "direction"
of :

Can we find a value of  that
maximizes ?

Rotation of frame of reference (2)

✧

CˆYY =

=

(θ)Y(θ)
1

N − 1
Y

T

[ ]
(θ)SY1Y1

(θ)SY2Y1

(θ)SY1Y2

(θ)SY2Y2

Y1

(θ)SY1Y1
=

+

θSX1X1
cos2

2 sin θ cos θ + θSX1X2
SX2X2

sin2

θ

SY1Y1
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Rotation of frame of reference (3)

Can we find a value of  that maximizes ?

✧

θ SY1Y1
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Rotation of frame of reference (3)

Can we find a value of  that maximizes ?

YES. Always. The solution  is such that

✧

θ SY1Y1

θm

tan 2 =θm
2SX1X1

−SX1X1
SX2X2
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Rotation of frame of reference (4)

We then find

Note that 

✧

( )SY1Y1
θm

( )SY2Y2
θm

( )SY1Y2
θm

=

=

=

{ + + } A maximu
1

2
SX1X1

SX2X2 [( + + 4 ]SX1X1
SX2X2

)2 S
2

X1X2

1/2

{ + − } A minimu
1

2
SX1X1

SX2X2 [( + + 4 ]SX1X1
SX2X2

)2 S2

X1X2

1/2

0 Zero!

0 ≤ ( ) ≤ , ≤ ( )SY2Y2
θm SX1X1

SX2X2
SY1Y1

θm
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Rotation of frame of reference (4)

We then find

Note that 

In addition we have the property that

so that through this rotation we have conserved the "total variance
of the dataset" but reorganized it into two other variables.

✧

( )SY1Y1
θm

( )SY2Y2
θm

( )SY1Y2
θm

=

=

=

{ + + } A maximu
1

2
SX1X1

SX2X2 [( + + 4 ]SX1X1
SX2X2

)2 S
2

X1X2

1/2

{ + − } A minimu
1

2
SX1X1

SX2X2 [( + + 4 ]SX1X1
SX2X2

)2 S2

X1X2

1/2

0 Zero!

0 ≤ ( ) ≤ , ≤ ( )SY2Y2
θm SX1X1

SX2X2
SY1Y1

θm

+ = +SY1Y1
SY2Y2

SX1X1
SX2X2
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New coordinates: 

 Null correlation!

old coordinates: 

Rotation of frame of reference (5)

✧

Y = XR( )θm

R( ) = [ ]θm
0.63

0.77

−0.77

0.63

{ (n)Y1

(n)Y2

=

=

0.63 (n) + 0.77 (n)X1 X2

− 0.77 (n) + 0.63 (n)X1 X2

= 0ρY1Y2

{ (n)X1

(n)X2

=

=

0.63 (n) − 0.77 (n)Y1 Y2

0.77 (n) + 0.63 (n)Y1 Y2

= 0.60ρX1X2
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What do we get?

A Principal Component Analysis (PCA) provides an alternate
representation of the variance of the original data
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Definition & Matrix diagonalization

Two Eigen vectors :

Two Principal Components (PC) :

✧

R( ) = [ ] ≡ Uθm
cos θm

sin θm

− sin θm

cos θm

Y = [ ] = XUY1 Y2
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Definition & Matrix diagonalization

Two Eigen vectors :

Two Principal Components (PC) :

What is the covariance matrix for the rotated data?

since 

✧

R( ) = [ ] ≡ Uθm
cos θm

sin θm

− sin θm

cos θm

Y = [ ] = XUY1 Y2

= [ ] ≡ ΓCˆYY

SY1Y1

0

0

SY2Y2

= = 0SY1Y2
SY2Y1
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Definition & Matrix diagonalization

Let's rewrite the covariance matrix for the rotated data:

Since , we can write

It is said that  and  are the Eigen values for . They are
found on the diagonal of the matrix .

This operation is called the diagonalization, or again an Eigen
decomposition of the covariance matrix.

✧

= Y = (XU (XU) = ( X)U = UCˆYY

1

N − 1
Y

T
1

N − 1
)T

1

N − 1
U

T
X

T
U

T
CˆXX

U = U = IU
T

U
T

= U = U [ ] = UΓCˆXX CˆYYU
T

SY1Y1

0

0

SY2Y2

U
T

U
T

SY1Y1
SY2Y2

CˆXX

Γ
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Summary in 2D

The data are decomposed into loadings (the Ys) of factors (the Us)
or in Principal Components (the Ys) times the modes (the Us):

✧

X = Y ⇔ Y = XUU
T

Y = [ ] = U = [ ]Y1Y2

⎡

⎣

⎢
⎢
⎢
⎢

(1)Y1

(2)Y1

⋮

(N)Y1

(1)Y1

(1)Y1

⋮

(N)Y2

⎤

⎦

⎥
⎥
⎥
⎥

U11

U21

U12

U22

(n)X1

(n)X2

=

=

(n) + (n)Y1 U11 Y2 U12

(n) + (n)Y1 U21 Y2 U22
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3. Empirical Orthogonal
Function (EOF) analysis
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Generalization to   data points

The generalization of the previous  variates case to  variates is
what is called an Empirical Orthogonal Function analysis, or EOF
analysis. Let's assume we observe  variables at  times.

✧

P

2 P

P N
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Generalization to   data points

The generalization of the previous  variates case to  variates is
what is called an Empirical Orthogonal Function analysis, or EOF
analysis. Let's assume we observe  variables at  times.

The data matrix is now of dimensions 

✧

P

2 P

P N

N × P

X = [ , , ⋯ , ] =X1 X2 XP

⎡

⎣

⎢
⎢
⎢
⎢

(1)X1

(2)X1

⋮

(N)X1

(1)X2

(2)X2

⋮

(N)X2

…

⋯

⋯

⋯

(1)XP

(2)XP

⋮

(N)XP

⎤

⎦

⎥
⎥
⎥
⎥
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Generalization to   data points

The generalization of the previous  variates case to  variates is
what is called an Empirical Orthogonal Function analysis, or EOF
analysis. Let's assume we observe  variables at  times.

The data matrix is now of dimensions 

So if you're data are not organized in this fashion, do this first! And
subtract the means!

✧

P

2 P

P N

N × P

X = [ , , ⋯ , ] =X1 X2 XP

⎡

⎣

⎢
⎢
⎢
⎢

(1)X1

(2)X1

⋮

(N)X1

(1)X2

(2)X2

⋮

(N)X2

…

⋯

⋯

⋯

(1)XP

(2)XP

⋮

(N)XP

⎤

⎦

⎥
⎥
⎥
⎥
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Generalization to   data points

The covariance matrix is  symmetric: 

Example for the SST data: the variances of the points are found
along the main diagonal. The covariances of a single point with all
the others are found along a given row and repeated along a column
with the same index.

✧

P

P × P = XCˆXX
1

N−1
X

T
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Eigen decomposition of covariance matrix

An eigen decomposition of a square matrix is always possible:

✧

CˆXX = UΓ = = + +⋯ +U
T

∑
k=1

k=P

γkUkU
T

k
γ1U1U

T

1
γ2U2U

T

2
γPUPU

T

P
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Eigen decomposition of covariance matrix

An eigen decomposition of a square matrix is always possible:

generating  eigen vectors, and  eigen values

 with 

✧

CˆXX = UΓ = = + +⋯ +U
T

∑
k=1

k=P

γkUkU
T

k
γ1U1U

T

1
γ2U2U

T

2
γPUPU

T

P

P P

U = = [ , , ⋯ , ]

⎡

⎣

⎢⎢⎢⎢

U11

U21

⋮

UP1

U12

U22

⋮

UP2

⋯

⋯

…

⋯

U1P

U2P

⋮

UPP

⎤

⎦

⎥⎥⎥⎥
U1 U2 UP

Γ =

⎡

⎣

⎢⎢
⎢⎢

γ1

0

⋮

0

0

γ2

⋮

0

⋯

⋯

…

⋯

0

0

⋮

γP

⎤

⎦

⎥⎥
⎥⎥

≥ ≥ ⋯ ≥ > 0γ1 γ2 γP
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Eigen decomposition of covariance matrix

✧

= = + +…CˆXX ∑
k=1

k=P

γkUkU
T

k
γ1U1U

T

1
γ2U2U

T

2
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EOF decomposition of the data

First step: Calculate Eigen decomposition : 

Second step: Calculate Principal Components : 

✧

= UΓCˆXX U
T

U = Γ =

⎡

⎣

⎢
⎢
⎢
⎢

U11

U21

⋮

UP1

U12

U22

⋮

UP2

⋯

⋯

…

⋯

U1P

U2P

⋮

UPP

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

γ1

0

⋮

0

0

γ2

⋮

0

⋯

⋯

…

⋯

0

0

⋮

γP

⎤

⎦

⎥
⎥
⎥
⎥

A = XU

A =

⎡

⎣

⎢
⎢
⎢
⎢

(1)A1

(2)A1

⋮

(N)AP

(1)A2

(2)A2

⋮

(N)A2

⋯

⋯

…

⋯

(1)AP

(2)AP

⋮

(N)AP

⎤

⎦

⎥
⎥
⎥
⎥
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It can be shown that 
. It is said that

the Eigen vectors are
orthonormal i.e they are
orthogonal of "length" 1.

Let's look again at what it meant
for the 2D example:

Eigen vectors

 is the -th component (location indexed by ) of the -th Eigen
vector.

✧

U =

⎡

⎣

⎢
⎢
⎢
⎢

U11

U21

⋮

UP1

U12

U22

⋮

UP2

⋯

⋯

…

⋯

U1P

U2P

⋮

UPP

⎤

⎦

⎥
⎥
⎥
⎥

Ujk j j k

U = U = IU
T

U
T
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Eigen matrix

It can be shown that

i.e. the sum of the eigen values, the trace of the eigen matrix, is
equal to the total (auto-co)variance of the data. As such one
interprets the following ratio

as "how much of the variance is explained by mode ".
✧

Γ = = U

⎡

⎣

⎢⎢
⎢⎢

γ1

0

⋮

0

0

γ2

⋮

0

⋯

⋯

…

⋯

0

0

⋮

γP

⎤

⎦

⎥⎥
⎥⎥

U
T
CˆXX

≡ Tr(Γ) = Tr( ) =∑
k=1

k=P

γk CˆXX ∑
k=1

k=P

Skk

C =Fm

γm

∑
k
γk

m
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Principal Components

The Principal Components are time series organized in the PC
matrix:

It can be shown that

which implies that the PC time series are uncorrelated with each
other, which is known as the Principal Component Analysis
property, or PCA property.

✧

A =

⎡

⎣

⎢
⎢
⎢
⎢

(1)A1

(2)A1

⋮

(N)A1

(1)A2

(2)A2

⋮

(N)A2

⋯

⋯

…

⋯

(1)AP

(2)AP

⋮

(N)AP

⎤

⎦

⎥
⎥
⎥
⎥

A = (N − 1)ΓA
T
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EOF decomposition of the data

In conclusion, the data matrix of size  can be re-written as a
sum of  modes:

In other words, any observation at location  at time step  is the
sum of  terms:

So that one can choose to study only one of time series, i.e one of
the modes:

which amounts to studying , maybe by spectral analysis.

✧

N × P
P

X = A = + +… +U
T

A1U
T

1 A2U
T

2 APU
T

P

j n
P

(n) = (n) = (n)Xj ∑
k=1

P

Xjk ∑
k=1

P

Ak Ujk

(n) = (n)Xjk Ak Ujk

(n)Ak
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What holds the units?

A confusing point of interpretation in EOF analysis is what
happened to units? Who holds the units?
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What holds the units?

A confusing point of interpretation in EOF analysis is what
happened to units? Who holds the units?

The mathematical operations of EOF analysis has transferred the
units to the PC time series , which means that the variance of 
is , the singular value for mode .

✧

Ak Ak
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What holds the units?

A confusing point of interpretation in EOF analysis is what
happened to units? Who holds the units?

The mathematical operations of EOF analysis has transferred the
units to the PC time series , which means that the variance of 
is , the singular value for mode .

My preference is to shift back the variance to the eigen vectors, that
is to the EOF "patterns" by writing

which implies that now all the PC time series  have a variance of 1
and that the units are held by the EOF patterns.

✧

Ak Ak

γk k

(n) = (n) =Xjk Ak Ujk

(n)Ak

γk
‾‾√

Ujk γk
‾‾√

Ak
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What holds the units?

A confusing point of interpretation in EOF analysis is what
happened to units? Who holds the units?

The mathematical operations of EOF analysis has transferred the
units to the PC time series , which means that the variance of 
is , the singular value for mode .

My preference is to shift back the variance to the eigen vectors, that
is to the EOF "patterns" by writing

which implies that now all the PC time series  have a variance of 1
and that the units are held by the EOF patterns. Beware also that
your software returns arbitrary signs for the eigen vectors and PC
time series. You can change the signs of  and  together.

✧

Ak Ak

γk k

(n) = (n) =Xjk Ak Ujk

(n)Ak

γk
‾‾√

Ujk γk
‾‾√

Ak

Ak Uk
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Pacific SST EOF analysis

First Eigen vector or EOF1 reorganized in geographic coordinates
and First Principal Component time series (PC1). The first mode
"explains" 64% of the total (monthly) variance.
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Pacific SST EOF analysis

Second Eigen vector or EOF2 reorganized in geographic coordinates
and First Principal Component time series (PC2). The second mode
"explains" 16% of the total (monthly) variance.
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Pacific SST EOF analysis

Third Eigen vector or EOF3 reorganized in geographic coordinates
and First Principal Component time series (PC3). The second mode
"explains" 5% of the total (monthly) variance.
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How many EOFs do we need?

✧

C =Fm

γm

∑ γk
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How many EOFs do we need?

Example of reconstructing the total signal at one location 
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How to practically calculate EOFs?

Do not use unknown “blackbox” code. Write your own, it takes a few
lines (in Matlab). Really. The not-so-efficient-way is:

assuming your data matrix D is organized in columns:

X = detrend(D,'constant');
C = ctranspose(X)*X/(N­1);
[U,G] = eig(C);
A = X*U;

The first line removes the mean of each column; the second line
calculates the covariance matrix ; the third line calculates the
eigen vectors  and eigen matrix  of ; the 4th line calculates the
principal component matrix . WATCH OUT, EIG sort the eigen
values in increasing order!

You're done, in 4 lines!

✧

C

U Γ C

A

40 / 57



How to practically calculate EOFs?

Do not use unknown “blackbox” code. Write your own, it takes a few
lines (in Matlab). Really. The not-so-efficient-way is:

assuming your data matrix D is organized in columns:

X = detrend(D,'constant');
C = ctranspose(X)*X/(N­1);
[U,G] = eig(C);
A = X*U;

The first line removes the mean of each column; the second line
calculates the covariance matrix ; the third line calculates the
eigen vectors  and eigen matrix  of ; the 4th line calculates the
principal component matrix . WATCH OUT, EIG sort the eigen
values in increasing order!

You're done, in 4 lines! But that's not great because the covariance
matrix can become very large, and computing ALL the eigen values
and vectors can take a very long time and crash your computer.

✧

C

U Γ C

A

40 / 57



How to practically calculate EOFs?

A slightly better way is to compute just a few eigen values and eigen
vectors:

X = detrend(D,'constant');
C = ctranspose(X)*X/(N­1);
[U,G] = eigs(C);
A = X*U;

Note how the function EIGS instead of EIG is used, computing only
the first 6 values. Here, you still compute the covariance matrix
which can be very large. EIGS sort the eigen values in decreasing
order!
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How to practically calculate EOFs?

The best way (but others may disagree) is as follows:

X = detrend(D,'constant');
[P,L,U] = svd(X,'econ');
A = P*L;
G = ctranspose(L)*L/(N­1);
C = U*G*ctranspose(U);

The last step computes the covariance matrix, but do this only if you
really need the covariance matrix! This method computes only a
number of eigen values and eigen vectors equal to the minimum of
your time steps or of your data points, which is likely more than
enough! This methods sorts the eigen value in decreasing order!
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4. Singular Value
Decomposition
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SVD analysis for studying coupling

Let's say you have two field variables  and  at  and  locations,
respectively, simultaneously observed at  times.

There exist multiple ways to study the coupling between two fields.
One of them is called the Singular Value Decomposition Analysis,
or SVD, sometimes called Maximum Covariance Analysis.

SVD analysis provides a decomposition of both fields in a way that
maximizes the (cross-)covariance between the two fields, just like
an EOF analysis provides a decomposition that maximizes the
(auto-co)variance of a single field. In fact, EOF analysis is a
particular case of SVD analysis when .

✧

X Y P M

N

Y = X
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Let's call the  data the "left field" (e.g. SST), which is 

and let's call the  data the "right field" (e.g. MSLP), which is 

Their cross-covariance matrix is  (not symmetric):

✧

X N × P

X = [ , , ⋯ , ] =X1 X2 XP

⎡

⎣

⎢⎢
⎢⎢

(1)X1

(2)X1

⋮

(N)X1

(1)X2

(2)X2

⋮

(N)X2

…

⋯

⋯

⋯

(1)XP

(2)XP

⋮

(N)XP

⎤

⎦

⎥⎥
⎥⎥

Y N ×M

Y = [ , , ⋯ , ] =Y1 Y2 YM

⎡

⎣

⎢⎢
⎢⎢

(1)Y1

(2)Y1

⋮

(N)Y1

(1)Y2

(2)Y2

⋮

(N)Y2

…

⋯

⋯

⋯

(1)YM

(2)YM

⋮

(N)YM

⎤

⎦

⎥⎥
⎥⎥

P ×M

= Y, = (n) (n)CˆXY

1

N − 1
X

T
ckj

1

N − 1 ∑
n=1

n=N

Xk Yj
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SVD

Assuming , the (truncated) SVD decomposition of the cross
covariance matrix is

 orthonormal left singular vector for , and  orthonormal right
singular vector for , associated with  singular values.

✧

M < P

= UΛCXY V
T

U = V =

⎡

⎣

⎢
⎢
⎢
⎢

U11

U21

⋮
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⋮
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⋯

⋯

…

⋯
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U2M
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⎥
⎥
⎥
⎥
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⎢
⎢
⎢
⎢
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V12

V22

⋮

VM2

⋯

⋯

…

⋯
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⋮
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⎥
⎥
⎥
⎥
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⎢
⎢
⎢
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⋯

⋯
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⋯
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⎥
⎥
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U
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SVD : Interpretation

A SVD analysis decomposes the cross covariance into modes, the
first of which maximizes the cross covariance as  with a
spatial structure given by the pair of singular vectors  and .

The second mode generates the second biggest fraction of cross
covariance as  with the spatial structure of the second pair
of vectors  and  but with these ones orthogonal to the vectors
of the first mode, and so forth.

The -th ratio  is called the squared fraction covariance of
mode  and is usually expressed as a percentage. It is usually
interpreted as the amount of the total cross (co)variance which is
captured by each coupled mode.

✧

/λ2

1
∑

k
λ2

k

U1 V1

/λ2

2
∑

k
λ2

k

U2 V2

n /λ2
n ∑

k
λ2

k

n
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SVD : Principal Components

Associated with the singular vectors are the Principal Components
time series, obtained by multiplying the data and their singular
vectors.

 contains the principal components for the left field and

 contains the principal components for the right field.

The left and right data matrix can now be written as the sums of 
modes:

✧

A = XU

B = YV

P

X = A =U
T

∑
k=1

M

AkU
T

k

Y = B =V
T

∑
k=1

M

BkV
T

k
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SVD : Principal Components

It can be shown that

that is

 for all  but

 for .

This means that the PC time series of the left and right fields for
mode  covary but the PCs of different mode do not.

The strength of the coupling between the field is usually measured
by the correlation coefficient

✧

B = ΛA
T

= (n) (n) =A
T

kBk ∑N
n=1 Ak Bk λk k

= (n) (n) = 0A
T

kBj ∑N
n=1 Ak Bj k ≠ j

n

=rn
A
T

nBn

A
T

nAnB
T

nBn
‾ ‾‾‾‾‾‾‾‾‾‾√
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SST from NOAA Optimum Interpolation
(OI) SST V2 

10-m Zonal winds from NCEP-DOE
Reanalysis 2 

Example: Monthly data in the Tropical
Pacific

Here, we consider the de-seasoned monthly data
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Example: Monthly data in the Tropical
Pacific

SVD1 showing rescaled singular vectors (shading), homogeneous
correlation maps (contours), and normalized PC time series.
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Example: Monthly data in the Tropical
Pacific

SVD2
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Example: Monthly data in the Tropical
Pacific

SVD3
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5. EOF analysis by SVD
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Why is calculating the SVD of a data matrix the same as calculating
the eigen decomposition of its associated autocovariance matrix?

The data matrix  of dimension  can be factored as

where  is ,  is , and  is .

✧

X N × P

X = PLQT

P N × N L N × P Q P × P
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✧
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Why is calculating the SVD of a data matrix the same as calculating
the eigen decomposition of its associated autocovariance matrix?

The data matrix  of dimension  can be factored as

where  is ,  is , and  is .

Now, the associated sample auto­covariance matrix is

Alternatively,  has an eigen decomposition, i.e.

where  and  are both 

✧

X N × P

X = PLQT

P N × N L N × P Q P × P

CˆXX = X/(N − 1)XH

= (PL (PL )/(N − 1)QH)H QH

= Q L /(N − 1).LH QH

CˆXX

= UΓCˆXX UT

U Γ P × P
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Since we have

by identification we have:

✧

= UΓ = Q L /(N − 1),CˆXX UT LH QH

U ≡ Q and Γ ≡ L/(N − 1)LH
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Since we have

by identification we have:

As a consequence, for an EOF analysis there is actually no need to
compute the auto covariance matrix to obtain the eigen vectors and
the eigen values. It suffices to compute the SVD of the original data
matrix:

The PC matrix is  and the eigen matrix is 

✧

= UΓ = Q L /(N − 1),CˆXX UT LH QH

U ≡ Q and Γ ≡ L/(N − 1)LH

X = PL = AQT UT

A = PL Γ = L/(N − 1)LH
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THE END
Thank you!

email: selipot@rsmas.miami.edu
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