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Foreword
This	lecture	is	heavily	based	on	a	longer	course	(The	Oslo	Lectures)
given	by	Jonathan	M.	Lilly	in	Oslo	at	the	invitation	of	the
Norwegian	Research	School	in	Climate	Dynamics	(ResClim),	during
the	week	May	23–27,	2016.	JML's	Oslo	Lectures	are	freely	available
for	online	viewing	or	download	at
{www.jmlilly.net/talks/oslo/index.html}

http://www.jmlilly.net/talks/oslo/index.html
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1.	The	time	domain



The	Sample	Interval
We	have	a	sequence	of	 	observations

which	coincide	with	times

The	sequence	 	is	called	a	discrete	time	series.

It	is	assumed	that	the	sample	interval,	 ,	is	constant

with	the	time	at	 	defined	to	be	 .	The	duration	is	 .

If	the	sample	interval	in	your	data	is	not	uniform,	the	first
processing	step	is	to	interpolate	it	to	be	so.

N

, n = 0, 1, 2,…N − 1xn

, n = 0, 1, 2,…N − 1.tn

xn

Δt

= ntn Δt

n = 0 0 T = NΔt



The	Underlying	Process
A	critical	assumption	is	that	there	exists	some	“process”	 	that
our	data	sequence	 	is	a	sample	of:

Unlike	 ,	 	is	believed	to	exist	for	all	times.

(i)	The	process	 	exists	in	continuous	time,	while	 	only	exists
at	discrete	times.

(ii)	The	process	 	exists	for	all	past	and	future	times,	while	 	is
only	available	over	a	certain	time	interval.

It	is	the	properties	of	 	that	we	are	trying	to	estimate,	based	on
the	available	sample	 .

x(t)
xn

= x(n ), n = 0, 1, 2,…N − 1.xn Δt

xn x(t)

x(t) xn

x(t) xn
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Measurement	Noise
In	reality,	the	measurement	device	and/or	data	processing	probably
introduces	some	artifical	variability,	termed	noise.

It	is	more	realistic	to	consider	that	the	observations	 	contain
samples	of	the	process	of	interest,	 ,	plus	some	noise	 :

This	is	an	example	of	the	unobserved	components	model.	This
means	that	we	believe	that	the	data	is	composed	of	different
components,	but	we	cannot	observe	these	components	individually.

The	process	 	is	potentially	obscured	or	degraded	by	the
limitations	of	data	collection	in	three	ways:	(i)	finite	sample
interval,	(ii)	finite	duration,	(iii)	noise.

Because	of	this,	the	time	series	is	an	imperfect	representation	of	the
real-world	processes	we	are	trying	to	study.

xn
y(t) ϵn

= y(n ) + , n = 0, 1, 2,…N − 1.xn Δt ϵn

y(t)



Time	versus	Frequency
There	are	two	complementary	points	of	view	regarding	the	time
series	 .

The	first	regards	 	as	being	built	up	as	a	sequence	of	discrete
values	 .

This	is	the	domain	of	statistics:	the	mean,	variance,	histogram,	etc.

When	we	look	at	data	statistics,	generally,	the	order	in	which	the
values	are	observed	doesn't	matter.

The	second	point	of	view	regards	 	as	being	built	up	of	sinusoids:
purely	periodic	functions	spanning	the	whole	duration	of	the	data.

This	is	the	domain	of	Fourier	spectral	analysis.

In	between	these	two	extremes	is	wavelet	analysis	which	is	not
covered	here,	see	the	Oslo	lectures.

xn

xn
, ,…x0 x2 xN−1

xn



Time-Domain	Statistics
Time	domain	statistics	consist	of	the	parameters	we	have
considered	earlier	during	the	week:	sample	mean,	sample	variance,
skewness,	kurtosis,	and	higher	moments.

The	term	sample	is	being	used	to	distinguish	these	quantities
calculated	from	the	data	sample	from	the	population,	or	true,
statistics	of	the	assumed	underlying	process	 .	That's	why	we	usex(t)
(⋅)̂



2.	Stationarity	vs	non-
stationarity,	trends



First	Example



First	Example



First	Example



Observable	Features
1.	 The	data	consists	of	two	time	series	that	are	similar	in	character.
2.	 Both	time	series	present	a	superposition	of	scales	and	a	high

degree	of	roughness.
3.	 The	data	seems	to	consist	of	different	time	periods	with	distinct

statistical	characteristics—the	data	is	nonstationary.
4.	 Zooming	in	to	one	particular	period	show	regular	oscillations	of

roughly	uniform	amplitude	and	frequency.
5.	 The	phasing	of	these	show	a	circular	polarization	orbited	in	a

counterclockwise	direction.
6.	 The	zoomed-in	plot	shows	a	fair	amount	of	what	appears	to	be

measurement	noise	superimposed	on	the	oscillatory	signal.



Observable	Features
1.	 The	data	consists	of	two	time	series	that	are	similar	in	character.
2.	 Both	time	series	present	a	superposition	of	scales	and	a	high

degree	of	roughness.
3.	 The	data	seems	to	consist	of	different	time	periods	with	distinct

statistical	characteristics—the	data	is	nonstationary.
4.	 Zooming	in	to	one	particular	period	show	regular	oscillations	of

roughly	uniform	amplitude	and	frequency.
5.	 The	phasing	of	these	show	a	circular	polarization	orbited	in	a

counterclockwise	direction.
6.	 The	zoomed-in	plot	shows	a	fair	amount	of	what	appears	to	be

measurement	noise	superimposed	on	the	oscillatory	signal.

This	is	a	record	of	velocities	of	a	single	surface	drifter	at	6-hour
intervals.	All	Surface	drifter	data	are	freely	available	from	the	Data
Assembly	Center	of	the	Global	Drifter	Program
{www.aoml.noaa.gov/phod/dac/}.

http://www.aoml.noaa.gov/phod/dac/index.php


Second	Example
We	have	already	encountered	this	time	series	...



Second	Example



Observable	Features
1.	 The	data	exhibit	a	very	strong	positive	trend,	roughly	linear	with

time.	Thus,	this	time	series	does	not	present	a	mean	statistics
that	represents	a	"typical"	value.

2.	 On	top	of	the	trend	there	seems	to	be	a	sinusoid-like	oscillation
that	does	not	appear	to	change	with	time.

3.	 The	zoomed-in	plot	shows	noise	superimposed	on	the	sinusoidal
and	trend	processes.



Observable	Features
1.	 The	data	exhibit	a	very	strong	positive	trend,	roughly	linear	with

time.	Thus,	this	time	series	does	not	present	a	mean	statistics
that	represents	a	"typical"	value.

2.	 On	top	of	the	trend	there	seems	to	be	a	sinusoid-like	oscillation
that	does	not	appear	to	change	with	time.

3.	 The	zoomed-in	plot	shows	noise	superimposed	on	the	sinusoidal
and	trend	processes.

This	is	a	record	of	daily	atmospheric	CO 	measured	at	Mauna	Loa
in	Hawaii	at	an	altitude	of	3400	m.	Data	from	Dr.	Pieter	Tans,
NOAA/ESRL	({www.esrl.noaa.gov/gmd/ccgg/trends/})	and	Dr.
Ralph	Keeling,	Scripps	Institution	of	Oceanography
({scrippsco2.ucsd.edu}).

We	will	investigate	again	this	time	series	during	the	practical
session	this	afternoon,	this	time	using	a	spectral	analysis	approach.

2

http://www.esrl.noaa.gov/gmd/ccgg/trends/
http://scrippsco2.ucsd.edu/


Non-stationarity
The	sample	statistics	may	be	changing	with	time	because	the
underlying	process	(that	is	its	statistics)	is	changing	with	time.	The
process	is	said	to	be	“non-stationary”.

Sometimes	we	need	to	re-think	our	model	for	the	underlying
process.	As	we	say	in	Lecture	3,	we	can	hypothesize	that	the	process

	is	the	sum	of	an	unknown	process	 ,	plus	a	linear	trend	 ,
plus	noise:
x(t) y(t) a

x(t) = y(t) + at+ ϵ(t),



Non-stationarity
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process	is	said	to	be	“non-stationary”.

Sometimes	we	need	to	re-think	our	model	for	the	underlying
process.	As	we	say	in	Lecture	3,	we	can	hypothesize	that	the	process

	is	the	sum	of	an	unknown	process	 ,	plus	a	linear	trend	 ,
plus	noise:

or	maybe	the	trend	is	better	described	as	being	quadratic	with	time
because	of	an	acceleration:

x(t) y(t) a

x(t) = y(t) + at+ ϵ(t),

x(t) = y(t) + b + at+ ϵ(t).t2



Non-stationarity
The	sample	statistics	may	be	changing	with	time	because	the
underlying	process	(that	is	its	statistics)	is	changing	with	time.	The
process	is	said	to	be	“non-stationary”.

Sometimes	we	need	to	re-think	our	model	for	the	underlying
process.	As	we	say	in	Lecture	3,	we	can	hypothesize	that	the	process

	is	the	sum	of	an	unknown	process	 ,	plus	a	linear	trend	 ,
plus	noise:

or	maybe	the	trend	is	better	described	as	being	quadratic	with	time
because	of	an	acceleration:

The	goal	is	then	to	estimate	the	unknowns	 ,	which	consists	of
methods	of	analyses	generally	called	“parametric”.	It	is	a	bit	like
analyzing	the	data	in	terms	of	its	statistics	(with	no	prior
expectations)	or	assuming	a	form	for	the	data.

x(t) y(t) a

x(t) = y(t) + at+ ϵ(t),

x(t) = y(t) + b + at+ ϵ(t).t2

a, b



3.	Fourier	Spectral
Analysis



Complex	Fourier	Series
It	is	possible	to	represent	a	discrete	time	series	 	as	a	sum	of

complex	exponentials,	a	complex	Fourier	series:

We	leave	out	for	now	how	to	obtain	the	complex	coefficients	 	...

xn

= , n = 0, 1,…N − 1xn
1

NΔt
∑
m=0

N−1

Xme
i2πmn/N

Xm



About	Frequency
You	will	typically	find	two	frequency	notations:

	is	called	the	cyclic	frequency.	Its	units	are	cycles/time.	Example:
Hz	=	cycles/sec.

	is	called	the	radian	or	angular	frequency.	Its	units	are
rad/time.	The	associated	period	of	oscillation	is	 .

As	 	goes	from	 	to	 ,	 	goes	from	 	to	 	and	
	goes	from	 	to	 .

A	very	common	error	in	Fourier	analysis	is	mixing	up	cyclic	and
radian	frequencies!

Note:	neither	“cycles”	nor	“radians”	actually	have	any	units,	thus
both	 	and	 	have	units	of	1/time.	However,	specifying	for	example
'cycles	per	day'	or	'radians	per	day'	helps	to	avoid	confusion.

cos(2πft) or cos(ωt)

f

ω = 2πf
P = 1/f = 2π/ω

t 0 1/f = 2π/ω = P 2πft 0 2π
ωt 0 2π

f ω



Review:	Sinusoids
Cosine	function	(blue)	and	sine	function	(orange)



Complex	Exponentials,	2D
Now	consider	a	plot	 	vs.	 .

That's	the	same	as	 .

cos(t) sin(t)

cos(t) + i sin(t) = eit



Complex	Exponentials,	3D
This	is	better	seen	in	3D	as	a	spiral	as	time	increases.

cos(t) + i sin(t) = eit



The	complex	Fourier	series
The	discrete	time	series	 	can	written	as	a	sum	of	complex
exponentials:

xn

= = , n = 0, 1,…xn
1

NΔt
∑
m=0

N−1

Xme
i2πmn/N 1

NΔt
∑
m=0

N−1

Xme
i2πn ⋅(m/N )Δt Δt



The	complex	Fourier	series
The	discrete	time	series	 	can	written	as	a	sum	of	complex
exponentials:

The	 th	term	behaves	as	
,	where	

.

Note	that	in	the	literature,	 	is	often	set	to	one,	and	thus	omitted,
leading	to	a	lot	of	confusion	(including	for	me!).

The	quantity	 	is	called	the	 th	Fourier	frequency.
The	period	associated	with	 	is	 .	Thus	 	tells	us
the	number	of	oscillations	contained	in	the	length	 	time	series.

xn

= = , n = 0, 1,…xn
1

NΔt
∑
m=0

N−1

Xme
i2πmn/N 1

NΔt
∑
m=0

N−1

Xme
i2πn ⋅(m/N )Δt Δt

m
= cos(2π n ) + i sin(2π n )ei2π nfm Δt fm Δt fm Δt

≡ m/Nfm Δt

Δt

≡ m/Nfm Δt m
fm 1/ = N/mfm Δt m

NΔt



Continuous	Time
	and	

	 	 	 	

cos(2π t)fm sin(2π t)fm

= 0,fm 1/100, 2/100, 3/100 t = [0…100]



Discrete	Time
	and	

	 	 	 	 	

cos(2π n )fm Δt sin(2π n )fm Δt

= 0,fm 1/100, 2/100, 3/100 n = 0, 1, 2,…99 = 1Δt



The	Nyquist	Frequency
The	single	most	important	frequency	is	the	highest	resolvable

frequency,	the	Nyquist	frequency.

The	highest	resolvable	frequency	is	half	the	sampling	rate	or	one
cycle	per	two	sampling	intervals.

Note	that	there	is	no	“sine”	component	at	Nyquist	in	the	Fourier
series!

≡ = ⋅ ≡ ⋅ =fN 1
2Δt

1
2

1
Δt

ωN 1
2

2π
Δt

π
Δt

= = = (−1 = 1,−1, 1,−1,…ei2π nfN Δt ei2π⋅1/(2 )⋅nΔt Δt eiπn )n



The	Rayleigh	Frequency
The	second	most	important	frequency	is	the	lowest	resolvable

frequency,	the	Rayleigh	frequency.

The	lowest	resolvable	frequency	is	one	cycle	over	the	entire	record.
Here	the	sample	interval	 	and	the	number	of	points	is	

.

≡ ≡fR 1
NΔt

ωR 2π
NΔt

= 1Δt

N = 10



Importance	of	Rayleigh
The	Rayleigh	frequency	 	is	important	because	it	gives	the
spacing	between	the	Fourier	frequencies:

,	 ,	 	

Thus,	it	controls	the	frequency-domain	resolution.	If	you	want	to
distiguish	between	two	closely	spaced	peaks,	you	need	the	dataset
duration	to	be	sufficiently	large	so	that	the	Rayleigh	frequency	is
sufficiently	small.

fR

= 0f0 =f1
1

NΔt
= ,…f2

2
NΔt

= n , =fn fR fR 1
NΔt



Importance	of	Rayleigh
The	Rayleigh	frequency	 	is	important	because	it	gives	the
spacing	between	the	Fourier	frequencies:

,	 ,	 	

Thus,	it	controls	the	frequency-domain	resolution.	If	you	want	to
distiguish	between	two	closely	spaced	peaks,	you	need	the	dataset
duration	to	be	sufficiently	large	so	that	the	Rayleigh	frequency	is
sufficiently	small.

As	an	example,	the	two	principal	semi-diurnal	tidal	“species”	have
period	of	12	h	(M )	and	12.4206012	h	(S ).	The	minimum	record
length	to	distinguish	the	two	frequencies	is	thus

fR

= 0f0 =f1
1

NΔt
= ,…f2

2
NΔt

= n , =fn fR fR 1
NΔt

2 2

N = = = = 354.36	hours.Δt
1
fR

1
−f S2 fM2

1

−1
12

1
12.4206012



Rayleigh	and	Nyquist
frequencies
The	ratio	of	the	Rayleigh	to	Nyquist	frequencies	tells	you	how	many
different	frequencies	you	can	resolve.

So	why	do	we	have	 	frequencies	in	the	sum	for	the	complex
Fourier	series?

= =
fN

fR

NΔt
2Δt

N

2

N

=xn
1

NΔt
∑
m=0

N−1

Xme
i2πmn/N



The	Fourier	Frequencies
The	first	few	Fourier	frequencies	 	are:

while	the	last	few	are

But	notice	that	the	last	Fourier	exponential	term	is

because	 	for	all	integers	 !	Frequencies	higher	than	the
Nyquist	cannot	appear	due	to	our	sample	rate.	Therefore,	these
terms	instead	specify	terms	that	have	a	frequency	less	than	the
Nyquist	but	that	rotate	in	the	negative	direction.

= m/(N )fm Δt

= , = , = ,…f0
0

NΔt
f1

1
NΔt

f2
2

NΔt

…, = = − , = = − .fN−2
N − 2
NΔt

1
Δt

2
NΔt

fN−1
N − 1
NΔt

1
Δt

1
NΔt

= = = =ei2π nfN−1 Δt ei2π(N−1)n/N ei2πne−i2πn/N e−i2πn/N e−i2π nf1 Δt

= 1ei2πn n



The	Fourier	Frequencies
In	the	vicinity	of	 ,	for	even	 ,	we	have

but	actually	the	first	frequency	higher	than	the	Nyquist	is	the
highest	negative	frequency:

Thus	the	positive	frequencies	and	negative	frequencies	are	both
increasing	toward	the	middle	of	the	Fourier	transform	array.

For	this	reason	Matlab	provides	fftshift,	to	shifts	the	zero	frequency,
not	the	Nyquist,	to	be	in	the	middle	of	the	array.

m = N/2 N

= − , = , = + ,…fN/2−1
1
2Δt

1
NΔt

fN/2
1
2Δt

fN/2+1
1
2Δt

1
NΔt

= − , = ,…fN/2−1
1
2Δt

1
NΔt

fN/2
1
2Δt

= − = −( − ) ,… .fN/2+1 fN/2−1
1
2Δt

1
NΔt



One-Sided	vs.	Two-Sided
There	exists	two	strictly	equivalent	representations,	two-sided	and
one-sided,	of	the	discrete	Fourier	transform:

where	 	and	 	are	an	amplitude	and	phase,	with	
.

The	two-sided	representation	is	more	compact	mathematically.

For	real-valued	 ,	the	one-sided	representation	is	more	intuitive
as	it	expresses	 	as	a	sum	of	phase-shifted	cosinusoids.

xn

xn

=

=

,
1

NΔt

∑
m=0

N−1

Xme
i2πmn/N

+ cos(2πmn/N + ) + (−1 ,
1

NΔt
X0

2
NΔt

∑
m=1

N/2−1

Am Φm XN/2 )n

Am Φm
=Xm Ame

iΦm

xn
xn



One-Sided	vs.	Two-Sided
There	exists	two	strictly	equivalent	representations,	two-sided	and
one-sided,	of	the	discrete	Fourier	transform:

where	 	and	 	are	an	amplitude	and	phase,	with	
.

The	two-sided	representation	is	more	compact	mathematically.

For	real-valued	 ,	the	one-sided	representation	is	more	intuitive
as	it	expresses	 	as	a	sum	of	phase-shifted	cosinusoids.	A	price	of
the	one-sided	form	is	that	even	and	odd	 	are	somewhat	different!
The	expression	above	is	for	even-valued	 .

xn

xn

=

=

,
1

NΔt

∑
m=0

N−1

Xme
i2πmn/N

+ cos(2πmn/N + ) + (−1 ,
1

NΔt
X0

2
NΔt

∑
m=1

N/2−1

Am Φm XN/2 )n

Am Φm
=Xm Ame

iΦm

xn
xn

N
N



The	Forward	DFT
So?	How	do	we	know	the	values	of	the	Fourier	coefficients	 ?	It
can	be	shown	that:

This	is	called	the	discrete	Fourier	transform	of	 .

The	DFT	transforms	 	from	the	time	domain	to	the	frequency
domain.	The	DFT	defines	a	sequence	of	 	complex-valued
numbers,	 ,	for	 ,	which	are	termed	the
Fourier	coefficients.

In	Matlab,	the	discrete	Fourier	transform	defined	above	is
computed	by	fft(x) .

Xm

=Xm Δt ∑
n=0

N−1

xne
−i2πmn/N

xn

xn
N

Xm m = 0, 1, 2,…N − 1

×Δt



The	Inverse	DFT
In	fact,

is	called	the	inverse	discrete	Fourier	transform.	It	expresses	how	
	may	be	constructed	using	the	Fourier	coefficients	multiplying

complex	exponentials—or,	as	we	saw	earlier,	phase-shifted
cosinusoids.

≡xn
1

NΔt
∑
m=0

N−1

Xme
i2πmn/N

xn



The	Spectrum
One	of	several	definitions	of	the	spectrum,	or	spectral	density
function,	at	frequency	 ,	is:

	is	called	the	expectation,	it	is	a	conceptual	“average”	over	a
statistical	ensemble,	and	it	cannot	obtained	in	practice.

fm

S( ) ≡ E{ } .fm lim
N→∞

|Xm|
2

N

E{⋅}



The	Spectrum
One	of	several	definitions	of	the	spectrum,	or	spectral	density
function,	at	frequency	 ,	is:

	is	called	the	expectation,	it	is	a	conceptual	“average”	over	a
statistical	ensemble,	and	it	cannot	obtained	in	practice.

Formally,	the	function	 	is	defined	for	all	frequencies	 ,	not	only	
,	but	as	 ,	the	Rayleigh	frequency	 	becomes

infinitesimally	small,	and	all	frequencies	are	obtained.

fm

S( ) ≡ E{ } .fm lim
N→∞

|Xm|
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The	Spectrum
One	of	several	definitions	of	the	spectrum,	or	spectral	density
function,	at	frequency	 ,	is:

	is	called	the	expectation,	it	is	a	conceptual	“average”	over	a
statistical	ensemble,	and	it	cannot	obtained	in	practice.

Formally,	the	function	 	is	defined	for	all	frequencies	 ,	not	only	
,	but	as	 ,	the	Rayleigh	frequency	 	becomes

infinitesimally	small,	and	all	frequencies	are	obtained.

However,	 	is	not	achievable	...	Therefore,	one	aspect	of
spectral	analysis	is	to	find	an	acceptable	estimate	of	the	true,
unknown,	spectrum	 	of	the	process	 .

fm

S( ) ≡ E{ } .fm lim
N→∞

|Xm|
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The	Parseval	Theorem
A	very	important	theorem	is	Parseval's	theorem	which	takes	the
following	form	for	the	discrete	case:

When	 ,	this	theorem	shows	that	the	total	variance	of	 	is
recoverable	from	the	sum	of	absolute	Fourier	coefficients	squared.

Which	can	be	interpreted	as	saying	that	the	spectrum	gives	you	the
distribution	of	the	variance	as	a	function	of	frequency.
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Spectral	Estimates
The	simplest	way	to	estimate	the	spectrum	 	function	of
frequency	 	is	to	simply	take	the	modulus	squared	of	the	Fourier
transform,

This	quantity	is	known	as	the	periodogram.

Note	that	the	Matlab	fft(x)	command	assumes	 	so	you	need
to	plot	abs(fft(x)) .

As	we	shall	see,	the	periodogram	is	not	the	spectrum!	It	is	an
estimate	of	the	spectrum—and	generally	speaking,	a	very	poor	one.

It	is	also	said	to	be	the	naive	spectral	estimate,	meaning	it	is	the
spectral	estimate	that	you	get	if	you	don't	know	that	there	is
something	better.	Please	do	not	use	the	periodogram	in	your
publications.

S(f)
f
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1
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× /N2 Δt



The	Multitaper	Method
An	alternate	spectral	estimate	called	the	multitaper	method.	Here	is
a	quick	sketch	of	this	method.

We	form	a	set	of	 	different	sequences	the	same	length	as	the	data,
that	is,	having	 	points	in	time.	These	sequences	are	chosen	from	a
special	family	of	functions	that	is	closely	related	to	familiar
orthogonal	functions,	e.g.	the	Hermite	functions.

These	 	different	sequences	are	denoted	as	 	for	
.	For	each	of	these	sequence,	we	form	a	spectral

estimate	as

which	involves	multiplying	the	data	by	the	sequence	 	before
taking	the	Fourier	transform.

K
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K ψ
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n

k = 1, 2,…K

≡ , n = 0, 1, 2,… , (N − 1).Ŝ
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The	Multitaper	Method
The	action	of	multiplying	the	data	by	some	sequence	before	Fourier
transforming	it,	as	in

is	called	tapering.	The	goal	is	to	reduce	the	bias	(systematic	error)
of	the	spectral	estimate.	These	 	different	individual	estimates	(aka
eigenspectra),	are	combined	into	one	average	spectral	estimate,	in
order	to	reduce	the	variance	(random	error)	of	the	estimate

The	multitaper	method	therefore	involves	two	steps:	(i)	tapering
the	data,	and	(ii)	averaging	over	multiple	individual	spectral
estimates.
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ψ

m

1
K

∑
k=1

K

Ŝ
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The	Taper	Functions

Here 	Slepian	tapers	are	shown.	These	are	orthogonal
functions	that	become	more	oscillatory	for	increasing	 .

K = 5
K



The	Multitaper	Method
The	multitaper	method	controls	the	degrees	of	spectral	smoothing
and	averaging	through	changing	the	properties	of	the	tapers.

The	multitaper	method	is	generally	the	favorite	spectral	analysis
method	among	those	researchers	who	have	thought	the	most	about
spectral	analysis.

It	is	recommended	because	(i)	it	avoids	the	deficiencies	of	the
periodogram,	(ii)	it	has,	in	a	certain	sense,	provable	optimal
properties,	(iii)	it	is	very	easy	to	implement	and	adjust,	(iv)	it
allows	an	estimate	of	the	spectrum	for	the	period	equal	to	the	length
of	your	time	series	(no	need	to	divide	up	your	time	series	as	for	the
Welch's	method!).

See	Thomson	(1982),	Park	et	al.	(1987),	and	Percival	and	Walden,	Spectral
Analysis	for	Physical	Applications.



Example
Agulhas	current	boundary	transport	from	Beal,	L.	M.	and	S.	Elipot,
Broadening	not	strengthening	of	the	Agulhas	Current	since	the	early	1990s,	Nature,
540,	570573,	doi:10.1038/nature19853

http://dx.doi.org/10.1038/nature19853


Example:	periodogram
Linear	plot	



Example:	periodogram
Log-log	plot	



Example:	multitaper
Effect	of	first	taper	



Example:	multitaper
Second	taper	



Example:	multitaper
Third	taper	



Example:	multitaper
Fourth	taper	



Example:	multitaper
Fifth	taper	



Example:	multitaper
Fifth	taper	



Example:	multitaper
Eigen	spectra	(colors)	and	multitaper	estimate	(black)	



Example:	period.	vs	mt
Periodogram	(gray)	vs	multitaper	(black)	



Uncertainty	of	the	spectrum

It	can	be	shown	(not	here)	that	the	estimate	of	the	spectrum	with	
tapers

K

(ω) ∼ S(ω)Ŝ
χ22K
2K



Uncertainty	of	the	spectrum

It	can	be	shown	(not	here)	that	the	estimate	of	the	spectrum	with	
tapers

As	such,	a	 	CI	is

K
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χ22K
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(1 − α)100%

[ < S(ω) < ]2K (ω)Ŝ

χ22K;α/2
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Uncertainty	of	the	spectrum

It	can	be	shown	(not	here)	that	the	estimate	of	the	spectrum	with	
tapers

As	such,	a	 	CI	is

This	means	that	you	multiply	 	by	 	to	get	the	lower
bound	and	similarly	for	the	upper	bound.

K

(ω) ∼ S(ω)Ŝ
χ22K
2K

(1 − α)100%

[ < S(ω) < ]2K (ω)Ŝ

χ22K;α/2

2KŜ
χ22K;1−α/2

S(ω)̂ 2K/χ22K;α/2



Uncertainty	of	the	spectrum

It	can	be	shown	(not	here)	that	the	estimate	of	the	spectrum	with	
tapers

As	such,	a	 	CI	is

This	means	that	you	multiply	 	by	 	to	get	the	lower
bound	and	similarly	for	the	upper	bound.	If	you	plot	your	estimates
on	a	logarithmic	scale,	you	obtain	

K

(ω) ∼ S(ω)Ŝ
χ22K
2K

(1 − α)100%

[ < S(ω) < ]2K (ω)Ŝ

χ22K;α/2

2KŜ
χ22K;1−α/2

S(ω)̂ 2K/χ22K;α/2

[log( )+ log < logS < log( )+ log ]2K
χ22K;α/2

Ŝ
2K

χ22K;1−α/2
Ŝ



Uncertainty	of	the	spectrum

Periodogram	(left)	and	multitaper	(right)	estimate	with	CIs	on
linear-linear	scales



Uncertainty	of	the	spectrum

Multitaper	estimate	with	CIs	on	log-log	scales	Periodogram	(left)
and	multitaper	(right)	estimate	with	CIs	on	log-log	scales



4.	Bivariate	time	series



Vector	and	complex
notations
What	if	your	process	of	interest	is	composed	of	two	time	series,	let's
say	 	and	 ?	As	in	the	vector	components	of	ocean	currents	or
atmospheric	winds:

Often,	a	bivariate	time	series	is	conveniently	written	as	a	complex-
valued	time	series:

where	 	and	 	is	the	complex	argument	(or	polar
angle)	of	 	in	the	interval	 .

x(t) y(t)

z(t) = [ ]x(t)
y(t)

z(t) = x(t) + iy(t) = |z(t)| ,ei arg (z)

i = −1−−−√ arg (z)
z [−π,+π]



The	Mean	of	Bivariate	Data
The	sample	mean	of	the	vector	time	series	 	is	also	a	vector,

that	consists	of	the	sample	means	of	the	 	and	 	components	of	
.

zn

≡ = [ ]μz
1
N

∑
n=0

N−1

zn
μ̂x

μ̂y

xn yn
zn



Variance	of	Bivariate	Data
The	variance	of	the	vector-valued	times	series	 	is	not	a	scalar	or	a
vector,	it	is	a	 	matrix

where	“ ”	is	the	matrix	transpose,	 ,	 .

Carrying	out	the	matrix	multiplication	leads	to

The	diagonal	elements	of	 	are	the	sample	variances	 	and	 ,
while	the	off-diagonal	gives	the	covariance	between	 	and	 .
Note	that	the	two	off-diagonal	elements	are	identical.
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2
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Fourier	transform
The	Fourier	theory	presented	earlier	for	scalar	time	series	is
completely	applicable	to	complex-valued	time	series,	in	discrete
form	( 	even):

The	first	sum	corresponds	to	positive	frequencies,	and	the	second
sum	to	the	associated	negative	frequencies	(except	the	zero	and
Nyquist	frequencies	for	 ).
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Rotary	Spectra

This	introduces	the	concept	of	rotary	spectrum:

This	is	very	useful	in	geophysical	fluid	mechanics	because
counterclockwise	motions	are	cyclonic	in	the	northern	hemisphere
and	clockwise	motions	are	anticyclonic,	and	vice-versa	in	the
southern	hemisphere.
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Rotary	variance
Imagine	you	have	only	two	opposite	components	present	in	your
time	series	at	frequency	 :

where
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=
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Elliptic	variance

This	is	the	equation	for	an	ellipse	oriented	at	an	angle	 	from	the	
axis,	with	semi-major	and	semi-minor	axes	 	and	 ,	respectively,
rotating	at	frequency	 ,	in	the	direction	given	by	the
sign	of	 .

See	more	details	about	elliptic	variance	in	JML's	Oslo	lectures.

= {A cos(2πkn/N + ϕ) + iB sin(2πkn/N + ϕ)}zn eiθ

θ x
A B

= k/(N )fk Δt

B



Cartesian	Spectra
Rotary	and	Cartesian	spectra	are	two	alternate	representation	of	the
variance	of	the	complex	time	series:
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Parseval	theorem
For	bivariate	data,	the	discrete	form	of	the	Parseval	theorem	takes
the	form:
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Parseval	theorem
For	bivariate	data,	the	discrete	form	of	the	Parseval	theorem	takes
the	form:

This	shows	that	the	total	variance	of	the	bivariate	process	is
recovered	completely	by	the	Cartesian,	or	rotary	Fourier
representation.
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Example
Hourly	current	meter	record	at	110	m	depth	from	the	Bravo
mooring	in	the	Labrador	Sea,	Lilly	and	Rhines	(2002)



Example	1
Hourly	current	meter	record	at	110	m	depth	from	the	Bravo
mooring	in	the	Labrador	Sea,	Lilly	and	Rhines	(2002)



Example	1
Hourly	current	meter	record	at	110	m	depth	from	the	Bravo
mooring	in	the	Labrador	Sea,	Lilly	and	Rhines	(2002)



Observable	Features
1.	 The	data	consists	of	two	time	series	that	are	similar	in	character.
2.	 Both	time	series	present	a	superposition	of	scales.
3.	 At	the	smallest	scale,	there	is	an	apparently	oscillatory

roughness	which	changes	its	amplitude	in	time.
4.	 A	larger	scale	presents	itself	either	as	localized	features,	or	as

wavelike	in	nature.
5.	 Several	sudden	transitions	are	associated	with	isolated	events.
6.	 Zooming	in,	we	see	the	small-scale	oscillatory	behavior	is

sometimes	 	degrees	out	of	phase,	and	sometimes	 .
7.	 The	amplitude	of	this	oscillatory	variability	changes	with	time.

The	fact	that	the	oscillatory	behavior	is	not	consistently	 	out	of
phase	removes	the	possibility	of	these	features	being	purely	inertial
oscillations.	The	amplitude	modulation	suggests	tidal	beating.

90∘ 180∘

90∘



Observable	Features
1.	 The	data	consists	of	two	time	series	that	are	similar	in	character.
2.	 Both	time	series	present	a	superposition	of	scales.
3.	 At	the	smallest	scale,	there	is	an	apparently	oscillatory

roughness	which	changes	its	amplitude	in	time.
4.	 A	larger	scale	presents	itself	either	as	localized	features,	or	as

wavelike	in	nature.
5.	 Several	sudden	transitions	are	associated	with	isolated	events.
6.	 Zooming	in,	we	see	the	small-scale	oscillatory	behavior	is

sometimes	 	degrees	out	of	phase,	and	sometimes	 .
7.	 The	amplitude	of	this	oscillatory	variability	changes	with	time.

The	fact	that	the	oscillatory	behavior	is	not	consistently	 	out	of
phase	removes	the	possibility	of	these	features	being	purely	inertial
oscillations.	The	amplitude	modulation	suggests	tidal	beating.

The	isolated	events	are	eddies,	which	cause	the	currents	to	suddenly
rotate	as	they	pass	by.	The	oscillations	are	due	to	tides	and	internal
waves.
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Cartesian	vs	Rotary	Spectra



Cartesian	vs	Rotary	Spectra



Cartesian	vs	Rotary	Spectra



Cartesian	vs	Rotary	Spectra



Example
Global	zonally-averaged	rotary	spectra	from	hourly	drifter
velocities,	see	Elipot	et	al.	2016.

file:///Users/selipot/Work/presentations/UCT2017/lectures/lecture4/index.html#http://dx.doi.org/10.1002/2016JC011716


5.	Filtering	and	other
topics



Continuous	Fourier
We	have	considered	the	FT	for	a	discrete	time	series	 :xn
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Continuous	Fourier
We	have	considered	the	FT	for	a	discrete	time	series	 :

but	it	extends	to	continuous	time	series	 :

Note	that	here	we	are	using	radian	frequency	 .
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Continuous	Fourier
We	have	considered	the	FT	for	a	discrete	time	series	 :

but	it	extends	to	continuous	time	series	 :

Note	that	here	we	are	using	radian	frequency	 .

The	continuous	notation	is	easier	to	understand	the	mechanics	of
filtering	a	time	series,	as	well	as	spectral	blurring.
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The	Spectrum	(revisited)

An	alternative	definition	of	the	spectrum	 	is	that	it	is	the
Fourier	transform	of	the	autocorrelation	function	 :

S(ω)
R(ω)

S(ω) ≡ R(τ)dτ, R(τ) = S(ω) dω∫ ∞
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e−iωτ

1
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The	Spectrum	(revisited)

An	alternative	definition	of	the	spectrum	 	is	that	it	is	the
Fourier	transform	of	the	autocorrelation	function	 :

This	is	called	the	Wiener–Khintchine	theorem.	The	spectrum	and
the	autocorrelation	function	are	Fourier	transform	pairs.	While
both	are	essentially	equivalent	in	that	they	capture	the	same
second-order	statistical	information	in	different	forms,	the
spectrum	turns	out	to	generally	be	far	more	illuminating,	as	well	as
easier	to	work	with	in	practice.
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R(ω)

S(ω) ≡ R(τ)dτ, R(τ) = S(ω) dω∫ ∞
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The	Spectrum	(revisited)

An	alternative	definition	of	the	spectrum	 	is	that	it	is	the
Fourier	transform	of	the	autocorrelation	function	 :

This	is	called	the	Wiener–Khintchine	theorem.	The	spectrum	and
the	autocorrelation	function	are	Fourier	transform	pairs.	While
both	are	essentially	equivalent	in	that	they	capture	the	same
second-order	statistical	information	in	different	forms,	the
spectrum	turns	out	to	generally	be	far	more	illuminating,	as	well	as
easier	to	work	with	in	practice.

But	the	true	autocorrelation	function	is	not	observable	unless	we
have	(i)	infinite	time	and	(ii)	access	to	an	abstract	set	of	other
universes	where	things	might	have	happened	differently!
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R(ω)

S(ω) ≡ R(τ)dτ, R(τ) = S(ω) dω∫ ∞
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1
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The	Convolution	Integral
The	convolution	 	of	a	function	 	and	 	is	defined	as:

Note	that	in	convolution,	the	order	does	not	matter	and	we	can
show	that

This	mathematical	operation	is	actually	what	is	being	done	when
“smoothing”	data.	(It	is	like	sliding	the	iron	on	the	tablecloth,	or
pulling	the	tablecloth	under	a	static	iron).

h(t) f(t) g(t)

h(t) ≡ f(τ)g(t− τ)dτ.∫ ∞

−∞

h(t) ≡ g(τ)f(t− τ)dτ∫ ∞

−∞



Convolution	Theorem
The	convolution	theorem	states	convolving	 	and	 	in	the
time	domain	is	the	same	as	a	multiplication	in	the	frequency
domain.

Let	 	and	 	be	the	Fourier	transforms	of	 	and	 ,
respectively.	It	can	be	shown	that	if

then	the	fourier	transform	of	 	is

f(t) g(t)

F (ω) G(ω) f(t) g(t)

h(t) = f(τ)g(t− τ)dτ∫ ∞

−∞
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Convolution	Theorem
The	convolution	theorem	states	convolving	 	and	 	in	the
time	domain	is	the	same	as	a	multiplication	in	the	frequency
domain.

Let	 	and	 	be	the	Fourier	transforms	of	 	and	 ,
respectively.	It	can	be	shown	that	if

then	the	fourier	transform	of	 	is

This	result	is	key	to	understand	what	happens	in	the	Fourier
domain	when	you	perform	a	time-domain	smoothing.
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F (ω) G(ω) f(t) g(t)

h(t) = f(τ)g(t− τ)dτ∫ ∞

−∞

h(t)

H(ω) = F (ω)G(ω).



Smoothing
Now	we	consider	what	happens	when	we	smooth	the	time	series	

	by	the	filter	 	to	obtain	a	smoothed	version	 	of	your
time	series:

by	the	convolution	theorem.

When	we	perform	simple	smoothing,	we	are	also	reshaping	the
Fourier	transform	of	the	signal	by	multiplying	its	Fourier	transform
by	that	of	the	smoothing	window.

x(t) g(t) (t)x̃

(t) = x(t− τ)g(τ)dτx̃ ∫ ∞

−∞
≡

=

(ω) dω.
1
2π

∫ ∞

−∞
X̃ eiωt

X(ω)G(ω) dω,
1
2π

∫ ∞

−∞
eiωt



Three	Window	examples



Three	Tapering	Windows



Three	Tapering	Windows



Lowpass	&	Highpass	Filters
From	the	convolution	theorem,	we	understand	that	filtering	will
keep	the	frequencies	near	zero	but	reject	higher	frequencies.	For
this	reason	they	are	called	low-pass	filters.

The	reverse	type	of	filtration,	rejecting	the	low	frequencies	but
keeping	the	high	frequencies,	is	called	high-pass	filtering.

The	residual	 	is	an	example	of	a	high-pass
filtered	time	series.

In	practice,	to	find	the	frequency	form	of	your	filter,	you	pad	it	with
zeros	so	that	it	becomes	the	same	length	as	your	time	series,	and
then	you	take	its	discrete	Fourier	transform.

(t) ≡ x(t) − (t)x̆ x̃



Convolution	Theorem	II
This	theorem	is	reciprocal:	is	your	multiply	in	the	time	domain,	you
convolve	in	the	Fourier	domain.

It	can	be	shown	that	if

then	the	fourier	transform	of	 	is

This	result	is	key	to	understand	what	happens	in	the	Fourier
domain	when	you	try	to	estimate	spectra,	i.e.	spectral	bluring,	or	to
design	band-pass	filters.

h(t) = f(t)g(t)

h(t)

H(ω) = F (ν)G(ω− ν)dω.∫ ∞

−∞



Bandpass	filtering
We	can	use	the	convolution	theorem	to	build	a	band-pass	filter.

We	want	to	modify	the	lowpass	filter	 	so	that	its	Fourier
transform	is	localized	not	about	zero,	but	about	some	non-zero
frequency	 .	To	do	this,	we	multiply	 	by	a	complex	exponential

.

It	can	be	shown	(see	Oslo	lectures)	that	the	Fourier	transform	of	
	is	 ,	which	is	localized	around	 .

Thus,	a	convolution	with	 	will	bandpass	the	data	in	the
vicinity	of	 .

In	fact,	a	lowpass	filter	is	a	particular	type	of	bandpass	in	which	the
center	of	the	pass	band	has	been	chosen	as	zero	frequency.

g(t)

ωo g(t)
g(t)ei tωo

g(t)ei tωo G(ω− )ωo ωo

g(t)ei tωo

ωo



Effect	of	Truncation
Now	imagine	instead	that	we	have	a	continuously	sampled	time
series	of	length	 ,	that	is,	we	have	 	but	only	between	times	

	and	 .	This	is	like	multiplying	 	by	a	function	
which	is	equal	to	one	between	 	and	 	and	0	otherwise:

We	will	denote	this	truncted	version	of	 	by	 .

How	does	the	spectrum	compare	of	 	compare	with	that	of	 ?

T z(t)
−T/2 T/2 z(t) g(t)

−T/2 T/2

(t) = g(t) × z(t)zT

z(t) (t)zT

(t)zT z(t)



Effect	of	Truncation
Now	imagine	instead	that	we	have	a	continuously	sampled	time
series	of	length	 ,	that	is,	we	have	 	but	only	between	times	

	and	 .	This	is	like	multiplying	 	by	a	function	
which	is	equal	to	one	between	 	and	 	and	0	otherwise:

We	will	denote	this	truncted	version	of	 	by	 .

How	does	the	spectrum	compare	of	 	compare	with	that	of	 ?

Q.	Using	one	of	the	windows	encountered	today,	how	can	we
express	the	relationship	between	 	and	 ?
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Effect	of	Truncation
Now	imagine	instead	that	we	have	a	continuously	sampled	time
series	of	length	 ,	that	is,	we	have	 	but	only	between	times	

	and	 .	This	is	like	multiplying	 	by	a	function	
which	is	equal	to	one	between	 	and	 	and	0	otherwise:

We	will	denote	this	truncted	version	of	 	by	 .

How	does	the	spectrum	compare	of	 	compare	with	that	of	 ?

Q.	Using	one	of	the	windows	encountered	today,	how	can	we
express	the	relationship	between	 	and	 ?

Q.	Therefore,	using	another	theorem	learned	today,	what	is	the
difference	between	their	spectra?
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Spectral	Blurring
The	spectrum	of	the	truncated	time	series	is	blurred	through
smoothing	with	a	function	 	that	is	the	square	of	the	Fourier
transform	of	a	boxcar:

The	smoothing	function,	which	is	known	as	the	Fejér	kernel

is	essentially	a	squared	version	of	the	“sinc”	or	 	function.

However,	 	is	not	a	very	smooth	function	at	all!

(ω)FT

(ω) ≡ S(ν) (ν − ω) dν.S̃
1
2π

∫ ∞

−∞
FT

(ω) ≡ (1 − ) dτ =FT ∫ T

−T

|τ|
T

eiωτ
1
T

(ωT/2)sin2

(ω/2)2

sin(x)/x

sin(x)/x



Multitapering	Revisited
We	can	now	understand	the	purpose	of	multitapering.

Doing	nothing	in	your	spectral	estimate	is	equivalent	to	truncating
your	data,	thus	implicitly	smoothing	the	true	spectrum	by	an
extremely	undesirable	function!

The	Fejér	kernel	has	a	major	problem	in	that	it	is	not	well
concentrated.	Its	“side	lobes”	are	large,	leading	to	a	kind	of	error
called	broadband	bias.

This	is	the	source	of	the	error	shown	in	the	motivating	example.

Next	we	take	a	look	at	three	different	tapering	functions	and	their
squared	Fourier	transforms.	The	broadband	bias	is	most	clear	if	we
use	logarithmic	scaling	for	the	 -axis.y
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Epilogue
During	the	practical	session	this	afternoon	we	will	cover	the
material	presented	this	morning,	as	well	cover	some	of	the	topic	of
filtering.

Thank	you!

Shane	Elipot

email:	selipot@rsmas.miami.edu


