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1.	Introduction



Introduction

Regression	analysis	consists	in	using	mathematical	expressions
(that	is	modeling,	or	modelling	in	the	U.K.)	to	describe	to	some
extent	the	behavior	of	a	random	variable	(r.v.)	of	interest.	This
variable	is	called	a	dependent	variable.	The	variables	that	are
thought	to	provide	information	about	the	dependent	variable	and
are	incorporated	in	the	model	are	called	independent	variables.	The
models	used	in	regression	analysis	typically	involve	unknown
constants,	called	parameters,	which	are	to	be	estimated	from	the
data.



Introduction

Regression	analysis	consists	in	using	mathematical	expressions
(that	is	modeling,	or	modelling	in	the	U.K.)	to	describe	to	some
extent	the	behavior	of	a	random	variable	(r.v.)	of	interest.	This
variable	is	called	a	dependent	variable.	The	variables	that	are
thought	to	provide	information	about	the	dependent	variable	and
are	incorporated	in	the	model	are	called	independent	variables.	The
models	used	in	regression	analysis	typically	involve	unknown
constants,	called	parameters,	which	are	to	be	estimated	from	the
data.

The	mathematical	complexity	of	the	model,	and	the	degree	to	which
it	is	realistic,	depend	on	how	much	is	known	about	the	process	and
the	purpose	of	the	regression	analysis	(and	the	ability	and
knowledge	of	the	scientist).

Most	regression	models	that	we	will	encounter	are	linear	in	their
parameters.	If	they	are	not	linear,	they	can	often	be	linearized.

Critical	thinking	should	be	employed,	as	any	model	can	be	fitted
to	(or	regressed	against)	any	data.



Example

Daily	atmospheric	CO 	measured	at	Mauna	Loa	in	Hawaii	at	an
altitude	of	3400	m.	Data	from	Dr.	Pieter	Tans,	NOAA/ESRL
(www.esrl.noaa.gov/gmd/ccgg/trends/)	and	Dr.	Ralph	Keeling,
Scripps	Institution	of	Oceanography	(scrippsco2.ucsd.edu).
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Example

Determining	the	linear	trend	of	this	time	series	is	an	example	of
linear	regression.	Further	modeling	could	include	estimating	the
seasonal	cycle	of	the	time	series	etc.



2.	Linear	regression



Simple	linear	regression

We	are	going	to	review	the	simplest	linear	model	involving	one
independent	variable	 	and	one	dependent	variable	 .	In	parallel	we
will	also	present	the	equations	for	a	more	general	model	relating	
to	 	dependent	variables	 .	Matlab	uses	notation	that
ressemble	the	matrix	formulas	for	the	general	(multivariate)	linear
model.

x y
y

p , ,… ,x1 x2 xp



Simple	linear	regression

We	are	going	to	review	the	simplest	linear	model	involving	one
independent	variable	 	and	one	dependent	variable	 .	In	parallel	we
will	also	present	the	equations	for	a	more	general	model	relating	
to	 	dependent	variables	 .	Matlab	uses	notation	that
ressemble	the	matrix	formulas	for	the	general	(multivariate)	linear
model.

As	an	example,	we	will	see	that	the	least	squares	solution	of	the
linear	model	is

which	in	Matlab	can	be	written

B = (X'*X)^-1*X'*Y;

but	is	better	coded	as

B = (X'*X)\X'*Y;

x y
y

p , ,… ,x1 x2 xp

= ( X Yβ̂ XT )−1XT



Simple	linear	regression

Previously,	when	examining	a	set	of	observations	 	of	 ,	we
assumed	that	the	expectation,	or	true	mean,	was	constant,	i.e.	

.

Yi y

E[ ] =Yi μy



Simple	linear	regression

Previously,	when	examining	a	set	of	observations	 	of	 ,	we
assumed	that	the	expectation,	or	true	mean,	was	constant,	i.e.	

.

We	know	consider	the	case	when	the	mean	is	a	function	of	another
variable,	as	an	example	time.	Linear	regressions	can	consist	in
estimating	the	trend	and	the	seasonal	cycle	of	your	time	series.

Yi y

E[ ] =Yi μy



In	the	case	of	the	CO 	record,	the
mean	is	clearly	not	a	constant,
increasing	every	year,	but	also
oscillating	within	each	year.

Simple	linear	regression

Previously,	when	examining	a	set	of	observations	 	of	 ,	we
assumed	that	the	expectation,	or	true	mean,	was	constant,	i.e.	

.

We	know	consider	the	case	when	the	mean	is	a	function	of	another
variable,	as	an	example	time.	Linear	regressions	can	consist	in
estimating	the	trend	and	the	seasonal	cycle	of	your	time	series.

Yi y

E[ ] =Yi μy
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This	model	is	applicable	as	an
example	for	estimating	a	linear
trend	of	a	time	series,	or	any
linear	relationship	between	two
r.vs.

Simple	linear	regression

The	simplest	model	is	that	the	true	mean	or	expectation	of	
changes	at	a	constant	rate	as	the	value	of	 	decreases	or	increases:

where	 	and	 	are	the	parameters	to	estimate.

y
x

E[ ] = + , i = 1,…,nYi β0 β1Xi

β0 β1



Simple	linear	regression

The	observations	of	the	dependent	variable	 	are	looked	at	as
individual	realizations	of	the	r.vs.	 	with	populations	means	 .
The	deviation	of	 	from	 	is	taken	into	account	by
incorporating	a	random	error	 	in	the	linear	model

y
Yi E[ ]Yi

Yi E[ ]Yi

ϵi

= + +Yi β0 β1Xi ϵi



The	 	are	assumed	normally
independent	identically	distributed
(i.i.d.)	r.vs.	as	 .	Since	
and	 	are	constant,	 .	

In	contrast,	the	observed	values	of	 	are
supposed	to	be	free	of	errors,	treated	as
constants.

Simple	linear	regression

The	observations	of	the	dependent	variable	 	are	looked	at	as
individual	realizations	of	the	r.vs.	 	with	populations	means	 .
The	deviation	of	 	from	 	is	taken	into	account	by
incorporating	a	random	error	 	in	the	linear	model

y
Yi E[ ]Yi

Yi E[ ]Yi

ϵi

= + +Yi β0 β1Xi ϵi

ϵi

∼ N (0,σ) ,β0 β1
Xi ∼ N (E[ ],σ)Yi Yi

X



General	linear	model	(or	multiple
regression)

The	general	linear	model	with	 	independent	variables	for
observation	 	is

There	are	 	parameters	to	estimate:	a	constant	 	and	
factors	 .	In	matrix	notation,	for	 	observations,	we	obtain
the	linear	system

p
i

= + + +⋯+ +Yi β0 β1Xi1 β2Xi2 βpXip ϵi

= p+ 1p′ ( )β0 p
,… ,β1 βp n

Y = Xβ+ ϵ

⎡

⎣
⎢⎢⎢⎢
Y1

Y2

⋮
Yn

⎤

⎦
⎥⎥⎥⎥

(n× 1)

=

⎡

⎣
⎢⎢⎢⎢⎢
1
1

⋮
1

X11

X21

⋮
Xn1

X12

X22

⋮
Xn2

⋯
⋯

⋯

X1p

X2p

⋮
Xnp

⎤

⎦
⎥⎥⎥⎥⎥

(n× )p′

+

⎡

⎣
⎢⎢⎢⎢
β0

β1

⋮
βp

⎤

⎦
⎥⎥⎥⎥

( × 1)p′

⎡

⎣
⎢⎢⎢⎢
ϵ1

ϵ2

⋮
ϵn

⎤

⎦
⎥⎥⎥⎥

(n× 1)



General	linear	model

Each	element	 	is	a	partial	regression	coefficient	that	quantifies
the	change	in	the	dependent	variable	 	per	unit	change	in	the
independent	variable	 ,	assuming	all	other	independent
variables	are	held	constant.

β =

⎡

⎣
⎢⎢⎢⎢
β0

β1

⋮
βp

⎤

⎦
⎥⎥⎥⎥

βj

Yi

Xij



Simple	linear	model

If	the	 	were	 	and	the	model	were	absolutely	true,	any	two	pairs	of
observations	 	would	be	enough	to	solve	for	the	two	unkown
parameters	 	and	 .

= + +Yi β0 β1Xi ϵi

ϵi 0
( , )Xi Yi

β0 β1



Simple	linear	model

If	the	 	were	 	and	the	model	were	absolutely	true,	any	two	pairs	of
observations	 	would	be	enough	to	solve	for	the	two	unkown
parameters	 	and	 .

Yet,	because	of	errors,	another	method	is	used,	called	least	squares
estimation,	which	gives	a	solution,	or	estimate	 	that	leads	to
the	smallest	possible	sum	of	squared	deviations	of	the
observations	 	from	the	estimates	 	of	their	true	means	 .

= + +Yi β0 β1Xi ϵi

ϵi 0
( , )Xi Yi

β0 β1

( , )β0̂ β1̂

Yi E[ ]Yî E[ ]Yi



Simple	linear	model:	LS	solution

Let	 	provide	the	estimate	of	the	true	mean	

such	that	the	sum	of	squares	of	deviations	from	the	mean

is	minimized.

	is	called	the	 -th	observed	residual.

( , )β0̂ β1̂

= + ≡E[ ]Yî β0̂ β1̂Xi Yî

SS(Res) = ( − =∑
i=1

n

Yi Yî )2 e2i

ei i



General	linear	model

For	the	general	model,	in	matrix	notation,

and	the	residuals	are	found	in	the	 	vector

and	the	sum	of	squares	of	residuals	is

which	is	a	minimum	because	of	 .

How	to	find	 ?

≡ XŶ β̂

(n× 1)

e = Y− = Y−XŶ β̂

SS(Res) = e = (Y− (Y− ) = (Y−X (Y−X )eT Ŷ)T Ŷ β̂)T β̂

β̂

β̂



Simple	linear	model

The	method	to	find	the	values	 	that	minimize	 	is
classic.	You	take	the	derivatives	of	 	with	respect	to	each	of
the	 	parameters	and	equate	the	results	to	zero.	You	obtain	a
system	of	 	equations	with	 	unkowns.	For	the	simple
linear	model	you	obtain	the	normal	equations	

which	solution	is

( , )β0̂ β1̂ SS(Res)
SS(Res)

p+ 1
p+ 1 p+ 1

nβ0̂

β0̂ ∑
i

Xi

+

+

β1̂ ∑
i

Xi

β1̂ ∑
i

X2
i

=

=

∑
i

Yi

∑
i

XiYi

β1̂

β0̂

=

=

= =
( − )( − )∑i Xi X

¯ ¯¯̄
Yi Y

¯ ¯¯̄

( −∑i Xi X
¯ ¯¯̄ )2

sxy

sxx

sxy

s2x

−Y
¯ ¯¯̄

β1̂X
¯ ¯¯̄



Simple	linear	model

The	predicted	values	from	the	solution	of	the	linear	model	are

	can	be	interpreted	as	being	both	the	estimate	of	the	population
mean	of	 	for	a	given	value	of	 ,	and	the	predicted	value	value	of	
for	a	future	value	of	 	which	is	 .

= + =Yî β0̂ β1̂Xi E[ ]Yî

Yî

y x y
x Xi



General	linear	model

For	the	multiple	regression	model,	the	normal	equations	are
obtained

and	the	least	squares	(LS)	solution	is

The	predicted	values	of	 	are

with	 	called	the	projection	matrix.	This	last
expressions	shows	that	the	estimated	 	are	linear	function	of	all
the	observed	values	 .

= 0 → X = Y
∂SS(Res)

∂β̂
XT β̂ XT

= ( X Yβ̂ XT )−1XT

y

Ŷ =
=

X = X( X Yβ̂ XT )−1XT

PY

P = X( XXT )−1XT

Yî

Yi



Simple	linear	model

The	observations	of	 	can	now	be	written	as	the	sum	of	the
estimated	population	mean	for	a	given	value	of	 	and	a	residual

The	sum	of	the	squares	of	the	observations	are

since	it	can	be	shown	that	 .

The	sum	of	the	squares	of	the	observations	is	the	sum	of	the	squares
"accounted	for"	by	the	model	plus	the	sum	of	the	squares	of
"unaccounted	for".

y
x

= +Yi Yî ei

∑
i

Y 2
i =

=

( +∑
i

Yî ei)2

+∑
i

Yî

2 ∑
i

e2i

2 = 0∑i Yî

2
ei



Simple	linear	model

Using	 ,	the	decomposition	of	the	sum	of	the
squares	can	be	used	as	follows

= (1/n)Y
¯ ¯¯̄ ∑i Yi

− n∑
i

Y 2
i Y

¯ ¯¯̄ 2

( −∑
i

Yi Y
¯ ¯¯̄ )2

=

=

− n∑
i

Yî

2
Y
¯ ¯¯̄ 2

( −β1̂
2∑

i

Xi X
¯ ¯¯̄ )2

+

+

∑
i

e2i

∑
i

e2i



Simple	linear	model

Using	 ,	the	decomposition	of	the	sum	of	the
squares	can	be	used	as	follows

What	does	this	say?	[Up	to	a	factor	 ]

= (1/n)Y
¯ ¯¯̄ ∑i Yi

− n∑
i

Y 2
i Y

¯ ¯¯̄ 2

( −∑
i

Yi Y
¯ ¯¯̄ )2

=

=

− n∑
i

Yî

2
Y
¯ ¯¯̄ 2

( −β1̂
2∑

i

Xi X
¯ ¯¯̄ )2

+

+

∑
i

e2i

∑
i

e2i

1/(n− 1)



Simple	linear	model

Using	 ,	the	decomposition	of	the	sum	of	the
squares	can	be	used	as	follows

What	does	this	say?	[Up	to	a	factor	 ]

It	approximately	says	that:

"The	total	variance	from	observations"	=	"variance	from	the
regression"	+	"variance	of	the	residuals"

In	the	model	 ,	the	regression	part	is	 .

	is	called	the	regression	coefficient.

= (1/n)Y
¯ ¯¯̄ ∑i Yi

− n∑
i

Y 2
i Y

¯ ¯¯̄ 2

( −∑
i

Yi Y
¯ ¯¯̄ )2

=

=

− n∑
i

Yî

2
Y
¯ ¯¯̄ 2

( −β1̂
2∑

i

Xi X
¯ ¯¯̄ )2

+

+

∑
i

e2i

∑
i

e2i

1/(n− 1)

= +Yi β1̂Xi β0̂ β1̂Xi

β1



Coefficient	of	determination

From	the	linear	model,	we	are	interested	in	a	quantity	called	the
coefficient	of	determination

For	the	simple	(univariate)	linear	model,

	is	thus	the	square	of	the	Pearson's	correlation	coefficient
between	 	and	 .

= = 1 −R2
( − −∑i Yi Y

¯ ¯¯̄ )2 ∑i e
2
i

( −∑i Yi Y
¯ ¯¯̄ )2

∑i e
2
i

( −∑i Yi Y
¯ ¯¯̄ )2

R2 =

=

=
( −β1̂

2
∑i Xi X

¯ ¯¯̄ )2

( −∑i Yi Y
¯ ¯¯̄ )2

( )sxy

s2x

2
s2x

s2y

= =
s2xy

s2xs
2
y

⎛
⎝⎜

sxy

s2xs
2
y

− −−−√
⎞
⎠⎟
2

r2xy

R2

x y



Simple	linear	model	

A	traditional	interpretation	of	 	is	that	it	is	a	measure	of	the
fraction	of	variance	of	the	dependent	variable	 	explained	by	the
independent	variable	 .

This	is	why	the	(square	of	the)	Pearson	correlation	coefficient	is
very	quickly	interpreted	as	being	a	measure	of	the	amount	of
variance	explained	between	two	variables.

As	an	example	if	 	you	will	often	read	someting	like	"x	is
able	to	explain	49%	of	the	variance	of	y".	(Since	 )

R2

R2

y
x

= 0.7rxy
= 0.490.72



Simple	linear	model:	uncertainties

In	the	model	 	where	we	assumed	that	
,	we	did	not	know	the	variance	 .
= + +Yi β0 β1Xi ϵi

∼ N (0,σ)ϵi σ2



Simple	linear	model:	uncertainties

In	the	model	 	where	we	assumed	that	
,	we	did	not	know	the	variance	 .	An	unbiased

estimate	of	 	is	given	by	the	residual	mean	square:

This	"mean"	value	is	obtained	by	dividing	the	 	by	the
number	of	degrees	of	freedom	for	the	residuals	which	is	the	number
of	data	points	 	minus	the	number	of	parameters	of	the	model	

.

= + +Yi β0 β1Xi ϵi
∼ N (0,σ)ϵi σ2

σ2

= ≡σ̂
2

s2
∑i e

2
i

n− (p+ 1)

SS(Res)

(n)
(p+ 1)



Simple	linear	model:	uncertainties

A	number	of	formulas	for	the	variance	of	the	estimates	can	be
derived	and	used	for	calculating	CIs:

Var[ ]β1̂

Var[ ]β0̂

Var[ ]Yî

Var[ ]Y0̂

=

=

=

=

s2

( −∑i Xi X
¯ ¯¯̄ )2

[ + ]1
n

X
¯ ¯¯̄ 2

( −∑i Xi X
¯ ¯¯̄ )2

s2

[ + ]1
n

( −Xi X
¯ ¯¯̄ )2

( −∑i Xi X
¯ ¯¯̄ )2

s2

[1 + + ]1
n

( −X0 X
¯ ¯¯̄ )2

( −∑i Xi X
¯ ¯¯̄ )2

s2



Simple	linear	model:	uncertainties

A	number	of	formulas	for	the	variance	of	the	estimates	can	be
derived	and	used	for	calculating	CIs:

Var[ ]β1̂

Var[ ]β0̂

Var[ ]Yî

Var[ ]Y0̂

=

=

=

=

s2

( −∑i Xi X
¯ ¯¯̄ )2

[ + ]1
n

X
¯ ¯¯̄ 2

( −∑i Xi X
¯ ¯¯̄ )2

s2

[ + ]1
n

( −Xi X
¯ ¯¯̄ )2

( −∑i Xi X
¯ ¯¯̄ )2

s2

[1 + + ]1
n

( −X0 X
¯ ¯¯̄ )2

( −∑i Xi X
¯ ¯¯̄ )2

s2

: , = , , ∼ t(0,n− p−H0 β̂ 1,0 Yi m1,0,Yi

−β1̂ m1

Var[ ]β1̂

− −−−−−√
−β0̂ m0

Var[ ]β0̂

− −−−−−√
−Yî mYi

Var[ ]Yî

− −−−−−√



General	linear	model:	uncertainties

For	the	general	linear	model,	the	formulas	are

P

Var[ ]β̂

Var[ ]Ŷ

Var[ ]Y0̂

Var[e]
=σ̂

2
s2

=

=

=

=

=

=

X( XXT )−1XT

( XXT )−1σ2

Pσ2

[I+ ( X ]X0 XT )−1X0
T σ2

(I−P)σ2

e/(n− p− 1)eT



General	linear	model:	uncertainties

For	the	general	linear	model,	the	formulas	are

Beware	that	the	expression	aboves	are	matrices.	As	an	example	for
the	simple	linear	model	for	which	 :

this	implies	that	the	parameter	estimates	covary.

P

Var[ ]β̂

Var[ ]Ŷ

Var[ ]Y0̂

Var[e]
=σ̂

2
s2

=

=

=

=

=

=

X( XXT )−1XT

( XXT )−1σ2

Pσ2

[I+ ( X ]X0 XT )−1X0
T σ2

(I−P)σ2

e/(n− p− 1)eT

p+ 1 = 2

Var[ ] = [ ]β̂
Var( )β0̂

Cov( , )β1̂ β0̂

Cov( , )β0̂ β1̂

Var( )β1̂



Note	how	the	CIs	for	the
prediction	 	for	future	values	

	of	 	are	larger	than	the	CIs
for	the	prediction	of	the	mean	of	

.	The	variance	of	the	prediction
is	the	variance	of	estimating	the
mean	plus	the	variance	of	the
quantity	estimated.

The	CIs	are	the	smallest	for	
.

In	this	case,	I	generated	data	and
I	had	prescribed	

Simple	linear	model:	uncertainties

Y0̂
X0 x

Yi

=X0 X
¯ ¯¯̄

= 0, = 0.8, = 0.04β0 β1 σ2



Linear	model	by	least	squares

The	method	of	least	squares	to	find	a	solution	to	the	general	linear
model	is	appropriate	when	four	assumptions	are	valid:	(1)	the
random	errors	 	are	normally	distributed,	(2)	independent,	(3)
with	zero	mean	and	constant	variance	 ,	and	(4)	the	 	are
observations	of	the	 	independent	variables	measured	without
errors.

= + + +⋯+ +Yi β0 β1Xi1 β2Xi2 βpXip ϵi

ϵi
σ2 Xij

p



Linear	model	by	least	squares

The	method	of	least	squares	to	find	a	solution	to	the	general	linear
model	is	appropriate	when	four	assumptions	are	valid:	(1)	the
random	errors	 	are	normally	distributed,	(2)	independent,	(3)
with	zero	mean	and	constant	variance	 ,	and	(4)	the	 	are
observations	of	the	 	independent	variables	measured	without
errors.

If	we	rely	on	a	large	number	 	of	data,	the	normal	assumption	may
be	invoked	because	of	the	CLT.	Otherwise,	Maximum	Likelihood
methods	can	be	used.	As	an	example	see	Elipot	et	al.	(2016).

= + + +⋯+ +Yi β0 β1Xi1 β2Xi2 βpXip ϵi

ϵi
σ2 Xij

p

n

http://dx.doi.org/10.1002/2016JC011716


Linear	model	by	least	squares

The	method	of	least	squares	to	find	a	solution	to	the	general	linear
model	is	appropriate	when	four	assumptions	are	valid:	(1)	the
random	errors	 	are	normally	distributed,	(2)	independent,	(3)
with	zero	mean	and	constant	variance	 ,	and	(4)	the	 	are
observations	of	the	 	independent	variables	measured	without
errors.

If	we	rely	on	a	large	number	 	of	data,	the	normal	assumption	may
be	invoked	because	of	the	CLT.	Otherwise,	Maximum	Likelihood
methods	can	be	used.	As	an	example	see	Elipot	et	al.	(2016).

When	the	dependent	variable	observations	are	normally	distributed
but	do	not	have	the	same	variances,	or	errors,	the	method	of
weighted	least	squares	can	be	implemented.

= + + +⋯+ +Yi β0 β1Xi1 β2Xi2 βpXip ϵi

ϵi
σ2 Xij

p

n

http://dx.doi.org/10.1002/2016JC011716


Linear	model	by	least	squares

The	method	of	least	squares	to	find	a	solution	to	the	general	linear
model	is	appropriate	when	four	assumptions	are	valid:	(1)	the
random	errors	 	are	normally	distributed,	(2)	independent,	(3)
with	zero	mean	and	constant	variance	 ,	and	(4)	the	 	are
observations	of	the	 	independent	variables	measured	without
errors.

If	we	rely	on	a	large	number	 	of	data,	the	normal	assumption	may
be	invoked	because	of	the	CLT.	Otherwise,	Maximum	Likelihood
methods	can	be	used.	As	an	example	see	Elipot	et	al.	(2016).

When	the	dependent	variable	observations	are	normally	distributed
but	do	not	have	the	same	variances,	or	errors,	the	method	of
weighted	least	squares	can	be	implemented.

When	the	independent	variables	are	actually	not	independent
(because	they	are	maybe	correlated),	the	method	of	general	least
squares	can	be	implemented.	See	references	[5]	and	[6].

= + + +⋯+ +Yi β0 β1Xi1 β2Xi2 βpXip ϵi

ϵi
σ2 Xij

p

n

http://dx.doi.org/10.1002/2016JC011716
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Linear	model	by	weighted	least	squares

Let's	assume	that	the	variance	of	each	 	(and	thus	of	each	 )	is	
	where	 	is	a	constant.	As	an	example,	some	observations	may

have	better	accuracy	than	others.

ϵi Yi

a2i σ
2 σ



Linear	model	by	weighted	least	squares

We	can	consider	the	following	rescaled	model,	dividing	by	 :

or

Because	the	variance	of	the	 	is	 ,	the	variance	of	the	
becomes	 .	We	can	now	use	least	squares	to	regress	 	on	the	

.

ai

= + + +⋯+ +
Yi

ai

1
ai

β0 β1
Xi1

ai
β2

Xi2

ai
βp

Xip

ai

ϵi
ai

= + + +⋯+ +Y ∗
i X∗

i0β0 β1X
∗
i1 β2X

∗
i2 βpX

∗
ip ϵ∗i

ϵi a2i σ
2 ϵ∗i

σ2 Y ∗
i

X∗
ij



Linear	model	by	weighted	least	squares

The	principle	here	is	to	assign	the	least	amount	of	weight	to	the
observations	with	the	largest	variance,	or	error.	The	weighting
matrix	is

Consider	the	general	linear	model	equation	left-multiplied	by	

which	can	be	rewritten	as

with	 ,	etc.

W =

⎡

⎣
⎢⎢⎢⎢⎢
1/a1
0

⋮
0

0
1/a2

⋮
0

⋯0

⋱
⋯

0

⋮
1/an

⎤

⎦
⎥⎥⎥⎥⎥

W

WY = WXβ+Wϵ

= β+Y∗ X∗ ϵ∗

= WYY∗



Linear	model	by	weighted	least	squares

The	weighted	least	square	solution	is

with

β̂

Var[ ]β̂

Var[ ]Ŷ
Var[e]

=

=

=
=

( X YX′V−1 )−1X′V−1

( XX′V−1 )−1σ2

X( XX′V−1 )−1X′σ2

[V−X( X ]X′V−1 )−1X′ σ2

= W =V−1 W′

⎡

⎣
⎢⎢⎢⎢⎢
a21

0

⋮
0

0

a22

⋮
0

⋯0

⋱
⋯

0

⋮
a2n

⎤

⎦
⎥⎥⎥⎥⎥



Linear	model	by	weighted	least	squares

The	weighted	least	square	solution	is

with

In	fact,	the	weighting	matrix	can	have	whatever	coefficient	you
want!	Here	it	is	a	special	case	that	simplifies	the	form	of	the
solution.	See	section	2.4	of	reference	[6].

β̂

Var[ ]β̂

Var[ ]Ŷ
Var[e]

=

=

=
=

( X YX′V−1 )−1X′V−1

( XX′V−1 )−1σ2

X( XX′V−1 )−1X′σ2

[V−X( X ]X′V−1 )−1X′ σ2

= W =V−1 W′

⎡

⎣
⎢⎢⎢⎢⎢
a21

0

⋮
0

0

a22

⋮
0

⋯0

⋱
⋯

0

⋮
a2n

⎤

⎦
⎥⎥⎥⎥⎥

file:///Users/selipot/Work/presentations/UCT2017/lectures/lecture3/index.html#references


3.	Polynomial	interpolation



Polynomial	fitting

Fitting	a	polynomial	function	of	an	independent	variable	 	to	a
dependent	variable	 	is	a	linear	regression	problem	which	consists
in	estimating	the	coefficients	of	the	polynomial

x
y

y = + x+ +…+ +…β0 β1 β2x
2 βkx

k



Polynomial	fitting

Fitting	a	polynomial	function	of	an	independent	variable	 	to	a
dependent	variable	 	is	a	linear	regression	problem	which	consists
in	estimating	the	coefficients	of	the	polynomial

We	will	review	two	general	cases.	The	first	case	is	global
polynomial	fitting	where	you	are	fitting	a	polynomial	function	that
exactly	estimate	your	data,	maybe	piecewise,	in	separate	intervals.
This	polynomial	is	of	maximum	order	of	the	number	of	observations
minus	one	and	is	called	an	interpolating	polynomial.

x
y

y = + x+ +…+ +…β0 β1 β2x
2 βkx

k



Polynomial	fitting

Fitting	a	polynomial	function	of	an	independent	variable	 	to	a
dependent	variable	 	is	a	linear	regression	problem	which	consists
in	estimating	the	coefficients	of	the	polynomial

We	will	review	two	general	cases.	The	first	case	is	global
polynomial	fitting	where	you	are	fitting	a	polynomial	function	that
exactly	estimate	your	data,	maybe	piecewise,	in	separate	intervals.
This	polynomial	is	of	maximum	order	of	the	number	of	observations
minus	one	and	is	called	an	interpolating	polynomial.

The	second	case	is	called	local	polynomial	estimation	when	you	are
fitting	a	polynomial	in	the	vicinity,	that	is	within	a	window,	of	a
given	value	of	 .	This	polynomial	of	arbitrary	order	approximate
your	data	locally	and	the	solution	is	typically	obtained	by	weighted
least	squares.

x
y

y = + x+ +…+ +…β0 β1 β2x
2 βkx

k

x



Polynomial	fitting

Fitting	a	polynomial	function	of	an	independent	variable	 	to	a
dependent	variable	 	is	a	linear	regression	problem	which	consists
in	estimating	the	coefficients	of	the	polynomial

We	will	review	two	general	cases.	The	first	case	is	global
polynomial	fitting	where	you	are	fitting	a	polynomial	function	that
exactly	estimate	your	data,	maybe	piecewise,	in	separate	intervals.
This	polynomial	is	of	maximum	order	of	the	number	of	observations
minus	one	and	is	called	an	interpolating	polynomial.

The	second	case	is	called	local	polynomial	estimation	when	you	are
fitting	a	polynomial	in	the	vicinity,	that	is	within	a	window,	of	a
given	value	of	 .	This	polynomial	of	arbitrary	order	approximate
your	data	locally	and	the	solution	is	typically	obtained	by	weighted
least	squares.

These	two	types	of	methods	can	be	used	in	general	to	process	your
data	to	either	interpolate	or	grid	your	data.

x
y

y = + x+ +…+ +…β0 β1 β2x
2 βkx

k

x



Interpolating	polynomial

Assume	you	have	 	pairs	of	observations	 	and	would	like	to
interpolate	 	for	given	value	of	 .

There	exists	an	interpolating	polynomial	of	order	 	given	by
the	following	Lagrange	formula

which	passes	through	your	data	points,	i.e.	

N ( , )Xi Yi

y x

N − 1

(x) =PN−1 ∑
k=1

N
⎛
⎝
⎜⎜ ∏

j=1
j≠k

N x−Xj

−Xk Xj

⎞
⎠
⎟⎟ Yk

( ) =PN−1 Xi Yi



Interpolating	polynomial

Example	with	N = 5



Polynomial	fitting

Alternatively	you	can	use	least	squares	to	fit	a	polynomial	of	any
order	equal	to	or	less	than	 	with	the	modelN − 1

= + + +…Yi β0 β1Xi β2X
2
i βN−1X

N−1
i



Interpolating	polynomial

Beware	that	interpolating	polynomial	can	quickly	generate	very
large	oscillations!

Same	example	as	before	except	that	the	original	data	point	
was	moved	to	 .

= 2Xi

2.9



Piecewise	linear	interpolation

A	piecewise	linear	interpolation,	or	simply	linear	interpolation
consist	in	calculating	the	interpolating	polynomial	of	order	1	over
an	interval	 ,	i.e	with	 	points.	The	Lagrange
formula	gives

which	can	be	rearranged	to	give	the	linear	interpolant

In	Matlab	it	is	implemented	by

yi = interp1(x,y,xi);

[ , ]Xk Xk+1 N = 2

(x) = ( ) + ( )P1
x−Xk+1

−Xk Xk+1
Yk

x− Xk

−Xk+1 Xk
Yk+1

(x) = + (x− )L1 Yk Xk
−Yk+1 Yk

−Xk+1 Xk
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Piecewise	linear	interpolation:	errors

The	Lagrange	formula	gives	you	an	easy	way	to	estimate	the
interpolation	error.	If	 	and	 	are	the	errors	or	uncertainties	for

	and	 ,	since
δk δk+1

Yk Yk+1

(x) = +P1 akYk ak+1Yk+1

δ (x) =P1 +a2
k
δ2
k

a2
k+1δ

2
k+1

− −−−−−−−−−−−−√



Hermite	polynomial	interpolation

The	issue	of	large	oscillations	in	interpolating	can	be	reined	in	by
using	Hermite	polynomials	which	satisfy	additional	conditions	on
its	derivatives	at	the	data	points,

where	 	is	to	be	specified.	 	is	the	 -th	derivative	of	 .

( ) = , ( ) =Pn Xk Yk P
(1)
n Xk dk

dk P
(ν)
n ν Pn



Hermite	polynomial	interpolation

The	issue	of	large	oscillations	in	interpolating	can	be	reined	in	by
using	Hermite	polynomials	which	satisfy	additional	conditions	on
its	derivatives	at	the	data	points,

where	 	is	to	be	specified.	 	is	the	 -th	derivative	of	 .

A	popular	Hermite	polynomial	is	the	shape-preserving	piecewise
cubic	Hermite	interpolating	polynomial	or	shape-preserving
pchip,	implemented	in	Matlab	by

yi = pchip(x,y,xi);

( ) = , ( ) =Pn Xk Yk P
(1)
n Xk dk

dk P
(ν)
n ν Pn



pchip	example

A	pchip	polynomial	is	cubic	(order	3)	and	its	derivatives	 ,	or
slopes,	at	each	data	point	are	zero	or	the	harmonic	means	of
consecutive	slopes:

dk

= + with =
1
dk

1
δk

1
δk−1

δk
−Yk+1 Yk

−Xk+1 Xk



Spline	interpolation

Another	popular	interpolation	method	uses	cubic	splines	which	are
piecewise	cubic	interpolating	polynomials	with	constraints	on	the
second	derivative	to	be	a	continuous.	It	is	implemented	in	Matlab	as

yi = spline(x,y,xi);



Cubic	interpolation

Another	method	using	piecewise	polynomials	of	order	3	is	called
cubic	convolution	and	is	described	in	detail	in	Keys	1981.	This
method	is	accessible	in	one	or	higher	dimensions	in	Matlab	as

yi = interpn(x,y,xi,'cubic');

http://dx.doi.org/10.1109/TASSP.1981.1163711


Some	comments

Interpolating	polynomials	and	splines	are	great	sets	of	tool	that
allow	you	to	quickly	interpolate	your	data.	Splines	are	not
necessarily	polynomial	of	order	3	and	can	be	of	greater	order.	There
exists	a	very	large	body	of	litterature	dealing	with	splines.



Some	comments

Interpolating	polynomials	and	splines	are	great	sets	of	tool	that
allow	you	to	quickly	interpolate	your	data.	Splines	are	not
necessarily	polynomial	of	order	3	and	can	be	of	greater	order.	There
exists	a	very	large	body	of	litterature	dealing	with	splines.

We	have	dealt	so	far	with	methods	of	interpolation	in	one
dimension	but	these	can	be	easily	expanded	in	two	or	more
dimensions,	notably	the	linear	and	cubic	methods.



Some	comments

Interpolating	polynomials	and	splines	are	great	sets	of	tool	that
allow	you	to	quickly	interpolate	your	data.	Splines	are	not
necessarily	polynomial	of	order	3	and	can	be	of	greater	order.	There
exists	a	very	large	body	of	litterature	dealing	with	splines.

We	have	dealt	so	far	with	methods	of	interpolation	in	one
dimension	but	these	can	be	easily	expanded	in	two	or	more
dimensions,	notably	the	linear	and	cubic	methods.

Polynomial	interpolation	implies	that	you	are	exactly	recovering
your	data,	i.e	 .	This	implies	that	your	data	are
effectively	error	free.	We	now	relax	this	condition	and	review	some
principles	of	local	polynomial	modeling.

P ( ) =Xi Yi



4.	Local	Polynomial
Modeling



Polynomial	by	least	squares

We	saw	earlier	that	we	can	use	least	squares	to	fit	a	polynomial	of
any	order	equal	to	or	less	than	your	 	data	points:N − 1

= + + +…Yi β0 β1Xi β2X
2
i βN−1X

N−1
i



Local	polynomial	fitting

Once	again	we	attempt	to	estimate	the	value	of	a	dependent	variable
	given	a	value	of	the	independent	value	 .	Here	we	follow	closely

reference	[7].	The	idea	is	to	estimate	an	arbitrary	function	
and	its	derivative	noted	 	with	the
model

where	 	are	observations	and	 	is	the	variance	of	 	at	
.

y x
m(x)

(x), (x),… , (x)m(1) m(1) m(p)

= m( ) + σ( )Yi Xi Xi

( , )Xi Yi σ( )Xi Yi

x = Xi
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Local	polynomial	fitting

Once	again	we	attempt	to	estimate	the	value	of	a	dependent	variable
	given	a	value	of	the	independent	value	 .	Here	we	follow	closely

reference	[7].	The	idea	is	to	estimate	an	arbitrary	function	
and	its	derivative	noted	 	with	the
model

where	 	are	observations	and	 	is	the	variance	of	 	at	
.

The	function	 	is	approximated	locally	by	a	polynomial	of	order
	by	considering	a	Taylor	expansion	in	the	neighborhood	of	 	as

y x
m(x)

(x), (x),… , (x)m(1) m(1) m(p)

= m( ) + σ( )Yi Xi Xi

( , )Xi Yi σ( )Xi Yi

x = Xi

m(x)
p x0

m(x) ≈ m( )x0

=

+ ( )(x− ) + (x− +…+ (x−m′ x0 x0
( )m′′ x0

2!
x0)2

m(p)

p!
+ (x− ) + (x− +…+ (x−β0 β1 x0 β2 x0)2 βp x0)p
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Local	polynomial	fitting

The	function	 	is	modeled	locally	as

and	 .	The	estimates	of	 	of	this	polynomial	are
obtained	for	each	location	of	interest	 	by	least	squares	fitting,
minimizing	the	following	expression

where

	is	called	a	kernel	function,	acting	over	a	half-bandwidth	 .

m(x)

m(x) = (x− .∑
j=0

p

βj x0)j

( ) = j!m(j)̂ x0 βĵ βj

x0

{ − ( − ( − )∑
i=1

n

Yi ∑
j=0

p

βj Xi x0)j}2Kh Xi x0

(x) = K ( )Kh

1
h

x

h

K h



Local	polynomial	fitting

In	this	example,	the	unknown	function	giving	 	is
estimated	at	 	using	an	order	one	polynomial,	using	data
points	within	the	orange	window.

E[ ] = m( )Yi Xi

X = x0



Local	polynomial	fitting

For	fitting	a	polynomial	to	your	data,	a	number	of	aspects	need	to
be	considered,	all	covered	in	many	details	as	an	example	in
reference	[7]:

1.	 Which	order	polynomial	do	you	need?	Are	you	trying	to	estimate
the	value	of	your	unknown	function	only,	or	are	you	trying	to
estimate	the	 -th	derivative	as	well?	In	this	case,	it	is
recommended	that	 	be	an	odd	number.

2.	 What	bandwidth	 	do	you	need?	It	will	depends	on	the	density
of	your	data,	as	well	as	the	order	of	the	chosen	polynomial.	The
choice	of	the	bandwidth	is	a	compromise	between	bias	and
variance	of	your	estimate.	Since	you	are	trying	to	estimate	
parameters	by	least	squares	you	should	have	at	least	that
number	of	points	in	your	window.

3.	 What	shape	should	the	kernel	function	have?	Should	it	be
uniform?	Gaussian?	Quadratic?	A	quadratic	kernel	called	the
Epanechnikov	kernel	is	often	recommended

(see	practical	this	afternoon!)

ν
p− ν

h

p+ 1
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Local	polynomial	fitting

This	figure	shows	an	example	of	fitting	a	known	function	embedded
in	noise	with	a	known	variance.	It	shows	the	impact	of	the
bandwidth	and	polynomial	order	on	the	bias	and	variance	of	the
estimates.



Local	polynomial	fitting

A	simpler	smoother	consists	in	estimating	the	function	 	as	a
polynomial	of	order	 .	The	equivalent	is	called	the	Nadaraya-
Watson	kernel	estimator	defined	as

The	typical	kernel	functions	used	are	the	Gaussian	kernel

and	the	symmetric	Beta	family

where	 	is	a	complicated	function	of	no	interest	here.

m(x)
0

(x) ≡m̂h

( − x)∑
j=1

n

Kh Xj Yj

( − x)∑
j=1

n

Kh Xj

K(z) = ( exp(− /2)2π
−−

√ )−1 z2

K(z) = (1 − , γ = 0, 1,… ,
1

B(1/2,γ+ 1)
t2)γ+

B(z,w)



5.	A	note	on	nonlinear
fitting



Nonlinear	fitting

What	does	one	do	when	the	function	you	are	trying	to	fit	to	your
data	is	non	linear	in	your	parameter?



Nonlinear	fitting

What	does	one	do	when	the	function	you	are	trying	to	fit	to	your
data	is	non	linear	in	your	parameter?	As	an	example,	you	expect
that	a	sinusoid	function	is	a	good	model	to	describe	the	dependency
of	your	dependent	variable	 	on	the	independent	variable	 ,	i.e.	

where	 	is	the	amplitude	and	 	is	the	phase.

y x

y(x) = a cos(x+ ϕ)

a ϕ



Nonlinear	fitting

What	does	one	do	when	the	function	you	are	trying	to	fit	to	your
data	is	non	linear	in	your	parameter?	As	an	example,	you	expect
that	a	sinusoid	function	is	a	good	model	to	describe	the	dependency
of	your	dependent	variable	 	on	the	independent	variable	 ,	i.e.	

where	 	is	the	amplitude	and	 	is	the	phase.	In	this	case	you're	in
luck	because	you	can	use	trigonometric	identities	and	write

y x

y(x) = a cos(x+ ϕ)

a ϕ

y(x) = a cos(ϕ) cos(x) − a sin(ϕ) sin(x)



Nonlinear	fitting

What	does	one	do	when	the	function	you	are	trying	to	fit	to	your
data	is	non	linear	in	your	parameter?	As	an	example,	you	expect
that	a	sinusoid	function	is	a	good	model	to	describe	the	dependency
of	your	dependent	variable	 	on	the	independent	variable	 ,	i.e.	

where	 	is	the	amplitude	and	 	is	the	phase.	In	this	case	you're	in
luck	because	you	can	use	trigonometric	identities	and	write

You	have	linearized	your	problem,	and	you	are	now	faced	with	a
multiple	linear	regression	problem,	estimating	 	and	

	as	a	function	of	observations	of	 	and	 	(see
practical	this	afternoon).

y x

y(x) = a cos(x+ ϕ)

a ϕ

y(x) = a cos(ϕ) cos(x) − a sin(ϕ) sin(x)

a cos(ϕ)
a sin(ϕ) y, cos(x) sin(x)



Nonlinear	fitting

What	if	you	really	cannot	linearize	your	problem?



Nonlinear	fitting

What	if	you	really	cannot	linearize	your	problem?	As	an	example,	it
is	often	useful	to	model	the	lagged	correlation	function	 ,	as	in
Beal	et	al.	2015

ρ(τ)

http://dx.doi.org/10.1175/JPO-D-14-0119.1


Nonlinear	fitting

In	this	particular	case,	we	assumed	that	the	lagged	correlation
function	for	the	along-shore	component	of	velocity,	as	a	function	of
separation	distance	(lag)	was	given	by

The	goal	is	here	to	fit	the	data	for	the	value	of	the	parameter	 ,	a
spatial	lengthscale.	We	apply	the	same	principle	of	minimization,
trying	to	find	the	value	 	minimizing

(r) = cos( )ρh e−(r/rh)
2 πr

2rh

rh

rh

SS(Res) = ( ( ) −∑
i=1

N

ρh ri ρi)2



Nonlinear	fitting

In	this	particular	case,	we	assumed	that	the	lagged	correlation
function	for	the	along-shore	component	of	velocity,	as	a	function	of
separation	distance	(lag)	was	given	by

The	goal	is	here	to	fit	the	data	for	the	value	of	the	parameter	 ,	a
spatial	lengthscale.	We	apply	the	same	principle	of	minimization,
trying	to	find	the	value	 	minimizing

Since	the	problem	cannot	be	put	in	linear	form,	the	least	square
method	is	not	available.	Instead	you	must	rely	on	nonlinear
optimization	routines.	As	an	example,	Matlab	can	apply	common
algorithms	by	the	function	 .

(r) = cos( )ρh e−(r/rh)
2 πr

2rh

rh

rh

SS(Res) = ( ( ) −∑
i=1

N

ρh ri ρi)2

fminsearch



Practical	session

Please	download	data	at	the	following	link:

Please	download	the	Matlab	code	at	the	following	link:

Make	sure	you	have	installed	and	tested	the	free	jLab	Matlab
toolbox	from	Jonathan	Lilly	at	www.jmlilly.net/jmlsoft.html

https://www.jmlilly.net/jmlsoft.html

