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1.	Covariance	&	Correlation



Covariance	(definitions)

Whereas	we	previously	dealt	with	a	single	r.v.	x,	we	now	deal	with
two	r.vs.,	x	and	y.	In	particular,	we	are	interested	in	evaluating	how
much	they	covary,	possibly	to	make	some	statement	about	a
causation	from	one	variable	to	the	other,	perhaps	explained	by	a
dynamical	relationship.

Perhaps	the	first	quantity	to	consider	is	the	covariance	of	x	and	y:

Cov(x, y) = Cxy ≡ E[(x − μx)(y − μy)]

The	variance	of	x	is	a	particular	case	of	covariance	when	y	and	x	are
the	same	r.v.:

Cov(x, x) = Cxx ≡ E[(x − μx)(x − μx)] = E[(x − μx)
2] = Var(x) = σ2x



Covariance	(definitions)

	is	called	the	joint	probability	density	function	or	joint	PDF.

If	 	where	 	and	 	are	the	PDFs	of	 	and	 ,
respectively,	then	it	is	said	that	 	and	 	are	independent.

Just	like	we	were	able	to	build	histograms	from	samples	 	of	a
single	r.v.	 ,	we	can	also	build	2D	histograms	from	pairs	of	samples	

	in	order	to	estimate	the	joint	PDF.

Cxy =

=

E[(x− )(y− )] = E[xy] −μx μy μxμy

(x− )(y− )p(x, y) dxdy∫ +∞

−∞
μx μy

p(x, y)

p(x, y) = p(x)p(y) p(x) p(y) x y
x y

Xn
x

( , )Xn Yn



Correlation

Since	the	r.v.	 	and	 	can	be	of	different	nature	or	magnitude,	we
can	consider	the	normalized	covariance,	that	is	the	correlation
between	 	and	

Since	we	have	the	property	that	 ,	the	correlation	is	a
number	between	 	and	 .

If	 	it	is	said	that	the	variable	 	and	 	are	uncorrelated.

If	two	r.vs.	are	independent	 	then	they	are	also
uncorrelated,	but	if	two	r.vs.	are	uncorrelated,	they	are	not
necessarily	independent	(i.e.	maybe	 )

x y

x y

= = =ρxy
Cxy

CxxCyy
− −−−−−

√

Cxy

σxσy

E[(x− )(y− )]μx μy

{E[(x− ]E[(y− ]}μx)2 μy)2
1/2

| | ≤Cxy σxσy
−1 1

= 0ρxy x y

[p(x, y) = p(x)p(y)]

p(x, y) ≠ p(x)p(y)



Covariance	&	Correlation:	estimation

Just	like	 	is	an	unbiased	estimate	of	 ,	an	unbiased	estimate	of
the	covariance	is

and	an	estimate	of	 	is

	is	called	the	Pearson's	correlation	coefficient.	It	measures	the
relative	strength	of	a	linear	relationship	between	 	and	 	(see
Lecture	3).	A	nonlinear	relationship	or	noise	will	make	 	tends	to
zero.

s2x σ2
x

= = ( − )( − )sxy Ĉxy
1

N − 1
∑
n=1

N

Xn X
¯ ¯¯̄

Yn Y
¯ ¯¯̄

ρxy

rxy = = =ρ̂xy
sxy

s2xs
2
y

− −−−√
( − )( − )∑N

n=1 Xn X
¯ ¯¯̄

Yn Y
¯ ¯¯̄

[ ( − ( − ]∑N
n=1 Xn X

¯ ¯¯̄ )2 ∑N
n=1 Yn Y

¯ ¯¯̄ )2
1/2

rxy
x y

rxy



Correlation:	significance

Since	 	and	 	are	r.vs.,	 	is	also	a	r.v.	with	a	given	distribution.

Typically,	one	wants	to	test	if	 	is	different	from	zero.	Kanji
(2006),	reference	[5]	recommends	to	calculate	the	following	test
statistic	(test	12)

which	follows	the	Student's	t-distribution	with	 	degrees	of
freedom.

x y rxy

rxy

t = ∼ t(0,N − 2)
rxy

1 − r2xy
− −−−−−√

N − 2− −−−−√

N − 2
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Correlation:	confidence	interval

Alternatively,	one	may	want	to	derive	CIs	for	 	by	using	the	Fisher
transformed	variable:

Since	 ,	the	CI	derived	for	 	can	be	used	to	calculate
CIs	for	 .

The	test	statistic

can	be	used	to	test	the	null	hypotheses	that	 ,	see	test
13	of	Kanji	(2006),	reference	[5].

rxy

w = = ln( ) ∼ N [ ln( ), ]tanh−1 rxy
1
2

1 + rxy
1 − rxy

1
2

1 + rxy
1 − rxy

1
N − 3− −−−−√

= tanhwrxy w
rxy

z = ∼ N (0, 1)
w− w0

1/ N − 3− −−−−√

= tanhρxy w0
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Correlation:	effective	degrees	of	freedom

A	crucial	aspect	of	testing	for	the	significance	of	 	is	to	use	the
right	value	for	 ,	which	is	the	size	of	your	sample	if	your	data
points	are	independent.	Otherwise,	a	lower	value	of	 ,	known	as
the	effective	degree	of	freedom,	needs	to	be	considered.	We	will
explore	these	aspects	later	and	during	the	practical	this	afternoon.

ρxy
N

N



Serial	correlation:	example

Let's	consider	a	realization	 	of	a	time	series	 ,
and	calculate	the	correlations	 :

Since	 ,	 	and	 	are	correlated,	hence	they	are	not
independent	samples.	It	is	said	that	 	is	serially	correlated,	thus
the	number	of	degrees	of	freedom	is	less	than	 .	The	variance	and
bias	of	correlation	estimates	involving	 	are	likely	to	be	affected.

, ,… ,X1 X2 XN x(t)
ρ( , )Xn Xn+1

≠ 0rxy Xn Xn+1
x

N
x



Spearman	correlation

The	Pearson's	correlation	coefficient	is	not	the	only	correlation
coefficient.	The	rank	correlation	coefficient	or	Spearman
correlation	coefficient	is

where	 	is	the	rank	of	the	data	sample	 .

= 1 −rs
6 ( −∑N

n=1 Rx;n Ry;n)2

N ( − 1)N 2

Rx;n Xn



Spearman	correlation

The	Pearson's	correlation	coefficient	is	not	the	only	correlation
coefficient.	The	rank	correlation	coefficient	or	Spearman
correlation	coefficient	is

where	 	is	the	rank	of	the	data	sample	 .	As	an	example,	with	
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Spearman	correlation

The	Pearson's	correlation	coefficient	is	not	the	only	correlation
coefficient.	The	rank	correlation	coefficient	or	Spearman
correlation	coefficient	is

where	 	is	the	rank	of	the	data	sample	 .	As	an	example,	with	

	measures	if	the	relationship	between	 	and	 	is	monotonically
increasing	( >0)	or	decreasing	( ).	For	large	 ,	

	under	 .

= 1 −rs
6 ( −∑N
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N ( − 1)N 2
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3
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3
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2
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1
12
3
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2
− 2
0

rs x y
rs < 0rs N

≈ N (0, 1/ )rs N − 1
− −−−−

√ : = 0H0 rs



Pearson	vs	Spearman



Covariance:	multivariate	case

If	you	are	dealing	with	more	than	two	r.vs.,	let's	say	 	variables	
	for	which	you	have	 	samples,	you

need	to	build	the	covariance	matrix

or	the	correlation	matrix

Methods	to	study	these	matrices	will	be	covered	in	lecture	5	(Eigen
techniques).

P
, ,… ,x1 x2 xP n = 1, 2,… ,N

≡Cxx

⎡

⎣
⎢⎢⎢⎢⎢
Cx1x1

Cx2x1

⋮
CxP x1

Cx1x2

Cx2x2

⋮
CxP x2

…

…

⋯
…

Cx1xP

Cx2xP

⋮
CxP xP

⎤

⎦
⎥⎥⎥⎥⎥

≡ρxx

⎡

⎣
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…

⋯
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Covariance:	multivariate	case;	estimate

If	you	have	 	r.vs.	 	for	which	you	have	
	samples,	typically	arranged	in	a	 	data	matrix

The	estimate	of	the	covariance	matrix	is

P , ,… ,x1 x2 xP
n = 1, 2,… ,N N × P

X = [ , , ⋯ , ] =X1 X2 XP

⎡

⎣
⎢⎢⎢⎢⎢

(1)X1

(2)X1

⋮
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⋮
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…
⋯

⋯
⋯
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⋮
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⎤

⎦
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1
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⎡
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Correlation:	beware!

It	is	not	because	you	find	a	zero	or	non	significant	correlation
between	two	r.vs.	that	there	is	no	formal	or	dynamical	relationship
between	the	two!



Correlation:	beware!

This	animation	shows	the	correlation	coefficient	between	two
sinusoid	signals	F	and	G	as	a	function	of	phase	lag.

Gif	by	Divergentdata	-	Own	work,	CC	BY-SA	4.0,	Link

file://commons.wikimedia.org/w/index.php?title=User:Divergentdata&action=edit&redlink=1
http://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/w/index.php?curid=57768455


2.	Lagged	Covariance	&
Correlation



Lagged	covariance	&	correlation	functions

We	now	generalize	the	concept	of	covariance	by	considering	two
r.vs.	for	which	the	samples	are	ordered,	maybe	as	a	function	of	time	
	(or	of	space).	In	this	case,	the	samples	are	realizations	of	time

series.
t



Lagged	covariance	&	correlation	functions

We	now	generalize	the	concept	of	covariance	by	considering	two
r.vs.	for	which	the	samples	are	ordered,	maybe	as	a	function	of	time	
	(or	of	space).	In	this	case,	the	samples	are	realizations	of	time

series.

The	covariance	statistic	presented	earlier	is	a	special	case	of	the
(cross-)covariance	function,	function	of	lag	

If	 ,	 	is	called	the	auto-covariance	function	of	 .

t

τ

(τ) = E{[x(t) − ][y(t+ τ) − ]}Cxy μx μy

y ≡ x (τ)Cxx x



Lagged	covariance	&	correlation	functions

We	now	generalize	the	concept	of	covariance	by	considering	two
r.vs.	for	which	the	samples	are	ordered,	maybe	as	a	function	of	time	
	(or	of	space).	In	this	case,	the	samples	are	realizations	of	time

series.

The	covariance	statistic	presented	earlier	is	a	special	case	of	the
(cross-)covariance	function,	function	of	lag	

If	 ,	 	is	called	the	auto-covariance	function	of	 .

Note	that	here	we	have	assumed	that	the	population	means	 	and	
	are	constant	with	time,	in	which	case	it	is	said	that	 	and	

are	stationary	time	series.

t

τ

(τ) = E{[x(t) − ][y(t+ τ) − ]}Cxy μx μy

y ≡ x (τ)Cxx x

μx
μy x(t) y(t)



Lagged	covariance	&	correlation	functions

In	statistics	and	engineering	sciences	the	names	can	be	different.	In
particular,	in	Matlab,	the	following	function	is	called	the	cross-
correlation	function

which	is	similar	to	the	covariance	function	but	without	subtracting
the	means.	As	such

(τ) = E{x(t)y(t+ τ)}Rxy

(τ) = (τ) −Cxy Rxy μxμy



Lagged	covariance	&	correlation	functions

In	statistics	and	engineering	sciences	the	names	can	be	different.	In
particular,	in	Matlab,	the	following	function	is	called	the	cross-
correlation	function

which	is	similar	to	the	covariance	function	but	without	subtracting
the	means.	As	such

With	such	naming	convention,	 	is	the	auto-correlation
function.

(τ) = E{x(t)y(t+ τ)}Rxy

(τ) = (τ) −Cxy Rxy μxμy

(τ)Rxx



Lagged	covariance	&	correlation	functions

The	auto-covariance	and	auto-correlation	functions	are	even
functions	of	 	(i.e.	symmetric	around	 ):

The	cross-covariance	and	cross-correlation	functions	are	neither
odd	nor	even,	but	satisfies

τ 0

(−τ)Cxx

(−τ)Rxx

=
=

(τ)Cxx

(τ)Rxx

(−τ)Cxy

(−τ)Rxy

=
=

(τ)Cyx

(τ)Ryx



Lagged	covariance	&	correlation	functions

The	auto-covariance	and	auto-correlation	functions	are	even
functions	of	 	(i.e.	symmetric	around	 ):

The	cross-covariance	and	cross-correlation	functions	are	neither
odd	nor	even,	but	satisfies

Beware!	Check	the	conventions	of	the	softwares	you	use!	In	Matlab,
the	cross-correlation	function	is	defined	as	

.

τ 0

(−τ)Cxx

(−τ)Rxx

=
=

(τ)Cxx

(τ)Rxx

(−τ)Cxy

(−τ)Rxy

=
=

(τ)Cyx

(τ)Ryx

E[x(t+ τ)y(t)] = (−τ) = (τ)Rxy Ryx



Lagged	correlation	coefficient

The	lagged	correlation	coefficient	is

(τ) = =ρxy
(τ)Cxy

(0) (0)Cxx Cyy
− −−−−−−−−−√

(τ)Cxy

σxσy



Lagged	correlation	coefficient

The	lagged	correlation	coefficient	is

It	can	be	challenging	but	let's	try	not	to	confuse	correlation	function
and	lagged	correlation.

(τ) = =ρxy
(τ)Cxy

(0) (0)Cxx Cyy
− −−−−−−−−−√

(τ)Cxy

σxσy



Lagged	correlation	coefficient

The	lagged	correlation	coefficient	is

It	can	be	challenging	but	let's	try	not	to	confuse	correlation	function
and	lagged	correlation.

You	may	want	to	call	 	the	lagged	auto-correlation
coefficient,	but	it	is	usually	called	the	autocorrelation	function
(which	should	be	used	for	 ).

(τ) = =ρxy
(τ)Cxy

(0) (0)Cxx Cyy
− −−−−−−−−−√

(τ)Cxy

σxσy

(τ) =ρxx
(τ)Cxx

(0)Cxx

(τ)Rxx



Lagged	correlation	coefficient

The	lagged	correlation	coefficient	is

It	can	be	challenging	but	let's	try	not	to	confuse	correlation	function
and	lagged	correlation.

You	may	want	to	call	 	the	lagged	auto-correlation
coefficient,	but	it	is	usually	called	the	autocorrelation	function
(which	should	be	used	for	 ).

Distributions	under	null	hypotheses	for	 	or	 	are
difficult	to	come	by	and	require	to	make	several	assumptions	(see
practical	this	afternoon).

(τ) = =ρxy
(τ)Cxy

(0) (0)Cxx Cyy
− −−−−−−−−−√

(τ)Cxy

σxσy

(τ) =ρxx
(τ)Cxx

(0)Cxx

(τ)Rxx

(τ)ρxy (τ)ρxx



Lagged	covariance	function	estimates

Consider	two	r.vs.	 	and	 	for	which	we	have	 	samples	separated
by	constant	intervals	 .	One	estimate	of	the	cross-covariance
function	at	lags	 	is

where	 	are	the	possible	lags.	It	can	be
shown	that	this	estimator	is	unbiased	(if	the	population	means	are
known	rather	than	estimated).

x y N
Δt

= kΔtτk

(kΔt) = ( − )( − )Ĉ
(1)
xy

1
N − |k|

∑
n=1

N−|k|

Xn X
¯ ¯¯̄

Yn+k Y
¯ ¯¯̄

k = 0,±1,±2,…,±(N − 1)



Lagged	covariance	function	estimates

Consider	two	r.vs.	 	and	 	for	which	we	have	 	samples	separated
by	constant	intervals	 .	One	estimate	of	the	cross-covariance
function	at	lags	 	is

where	 	are	the	possible	lags.	It	can	be
shown	that	this	estimator	is	unbiased	(if	the	population	means	are
known	rather	than	estimated).	There	exists	another	estimator	of	

	which	is

which	is	typically	called	the	"biased"	estimator	but	has	a	smaller

random	error	compared	to	 .	See	practical	this	afternoon.

x y N
Δt

= kΔtτk

(kΔt) = ( − )( − )Ĉ
(1)
xy

1
N − |k|

∑
n=1

N−|k|

Xn X
¯ ¯¯̄

Yn+k Y
¯ ¯¯̄

k = 0,±1,±2,…,±(N − 1)

(τ)Cxy

(kΔt) = ( − )( − )Ĉ
(2)
xy

1
N

∑
n=1

N−|k|

Xn X
¯ ¯¯̄

Yn+k Y
¯ ¯¯̄

Ĉ
(1)
xy



Lagged	correlation	estimate

An	estimate	of	the	lagged	correlation	coefficient	is

where	the	use	of	 	cancels	out	the	factor	 	in	the	formulas	for
the	variances.	This	estimator	is	accessed	in	Matlab	using	the	scale
option	 	as	in

[rhox,lags] = xcov(Y,X,'coeff');

or

[rhox,lags] = xcorr(Y-mean(Y),X-mean(X),'coeff');

(kΔt) = =ρ̂xy
(kΔt)Ĉ

(2)
xy

[ ]Ĉ
(2)
xx Ĉ

(2)
yy

1/2

( − )( − )∑N−|k|
n=1 Xn X

¯ ¯¯̄
Yn+k Y

¯ ¯¯̄

[ ( − ( − ]∑N
n=1 Xn X

¯ ¯¯̄ )2 ∑N
n=1 Yn Y

¯ ¯¯̄ )2
1/2

Ĉ
(2)
xy N

'coeff'



Auto-correlation	as	a	measure	of	memory

Lag	 	scatter	plots	and	cor.	coeff.	 	for	Agulhas

transport	

m ρ( , )Xn Xn+m



Auto-correlation	as	a	measure	of	memory

Lagged	autocorrelation	coefficient	for	Agulhas	transport	time
series.	With	 ,	possible	lags	are	N = 808 τ = −807,…,807



Auto-correlation	as	a	measure	of	memory

Lagged	autocorrelation	coefficient	for	Agulhas	transport	time
series.	With	 ,	possible	lags	are	N = 808 τ = −807,…,807



Lagged	correlation	for	time	delay

The	lagged	correlation	or	covariance	function	can	be	used	to
determine	a	time	delay	between	two	signals.	Let's	assume	that	a
transmitted	signal	(a	time	series)	 	is	received	as

where	 	is	an	attenuation	factor,	 	is	a	constant	time	delay
equal	to	let's	say	a	distance	 	divided	by	a	propagation	velocity	 ,
and	 	is	an	added	noise	uncorrelated	with	 .

x(t)

y(t) = αx(t− ) + n(t)τ0

α = d/cτ0
d c

n(t) x(t)



Lagged	correlation	for	time	delay

The	lagged	correlation	or	covariance	function	can	be	used	to
determine	a	time	delay	between	two	signals.	Let's	assume	that	a
transmitted	signal	(a	time	series)	 	is	received	as

where	 	is	an	attenuation	factor,	 	is	a	constant	time	delay
equal	to	let's	say	a	distance	 	divided	by	a	propagation	velocity	 ,
and	 	is	an	added	noise	uncorrelated	with	 .	It	is	easily	shown
that	

x(t)

y(t) = αx(t− ) + n(t)τ0

α = d/cτ0
d c

n(t) x(t)

(τ) = α (τ − )Rxy Rxx τ0



Lagged	correlation	for	time	delay

The	lagged	correlation	or	covariance	function	can	be	used	to
determine	a	time	delay	between	two	signals.	Let's	assume	that	a
transmitted	signal	(a	time	series)	 	is	received	as

where	 	is	an	attenuation	factor,	 	is	a	constant	time	delay
equal	to	let's	say	a	distance	 	divided	by	a	propagation	velocity	 ,
and	 	is	an	added	noise	uncorrelated	with	 .	It	is	easily	shown
that	

Since	the	maximum	of	 	is	for	 	,	the	peak	value	of	
	occurs	when	 	which	allows	us	to	determine	the

constant	time	delay.

x(t)

y(t) = αx(t− ) + n(t)τ0

α = d/cτ0
d c

n(t) x(t)

(τ) = α (τ − )Rxy Rxx τ0

(τ)Rxx τ = 0
(τ)Rxy τ = τ0



Lagged	correlation	for	time	delay



Example	from	DiNezio	et	al.	2009
investigating	the	relationship	between
Gulf	Stream	transport	through	the
Florida	Strait	and	wind	stress	curl.

Lagged	correlation	for	time	delay

http://dx.doi.org/10.1175/2008JPO4001.1


Auto-correlation	and	effective	degrees	of
freedom

The	concept	of	effective	degrees	of	freedom	and	(de)correlation
time	scale	are	intimately	linked.	If	 	is	the	number	of	evenly
distributed	samples	at	interval	 ,	then	the	number	of	effective
degrees	of	freedom	is

where	 	is	the	length	of	your	time	series	and	 	is	the	decorrelation
time	scale,	also	referred	to	as	an	integral	time	scale.	 	gives	you
the	number	of	effectively	independent	samples	in	your	data.

N
Δt

= =Neff
NΔt
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Auto-correlation	and	effective	degrees	of
freedom

The	concept	of	effective	degrees	of	freedom	and	(de)correlation
time	scale	are	intimately	linked.	If	 	is	the	number	of	evenly
distributed	samples	at	interval	 ,	then	the	number	of	effective
degrees	of	freedom	is

where	 	is	the	length	of	your	time	series	and	 	is	the	decorrelation
time	scale,	also	referred	to	as	an	integral	time	scale.	 	gives	you
the	number	of	effectively	independent	samples	in	your	data.

If	your	samples	are	independent,	the	decorrelation	time	scale	is	the
time	step	of	your	time	series	 	and	 .	There	is	not	only
one	way	of	computing	 	or	estimating	 .	In	fact,	it	depends	on
the	statistics	for	which	these	will	be	used.

N
Δt

= =Neff
NΔt
T0

T

T0

T T0
Neff

Δt = NNeff
Neff T0



Decorrelation	time	scale

One	common	definition	of	the	decorrelation	or	integral	time	scale
for	the	r.v.	 	is	(e.g.	Thompson	and	Emery	(2014),	section	3.15.2)

A	graphical	interpretation	of	 	is	given	in	Figure	3.13	of	Emery	and
Thompson	(2014)	:	

x

= (τ) dτ = (τ) dτT0
1
(0)Cxx

∫ +∞

−∞
Cxx

2
(0)Cxx

∫ +∞

0
Cxx

T0
× (0) = (τ) dτT0 Cxx ∫ +∞

−∞ Cxx



Decorrelation	time	scale

An	estimate	of	 	is	obtained	by	applying	the	trapezoidal
integration	formula	for	the	integral,	i.e.

where	 	is	the	sample	variance	estimate	of	 	and	 	is
the	index	where	the	summation	is	stopped.

T0

= ΔtT0̂
2
s2x

∑
n=0

M−1 [(n+ 1)Δt] + [nΔt]Ĉxx Ĉxx

2

= (0)s2x Ĉxx x M



Decorrelation	time	scale

An	estimate	of	 	is	obtained	by	applying	the	trapezoidal
integration	formula	for	the	integral,	i.e.

where	 	is	the	sample	variance	estimate	of	 	and	 	is
the	index	where	the	summation	is	stopped.

Note	that	Thompson	and	Emery	(2014),	section	5.3.5,	give	an
alternate	formula

where	they	omitted	the	factor	 	and	essentially	integrated	only	one
side	of	the	auto-covariance	function.	This	is	also	the	formula
typically	used	in	Lagrangian	studies.	(And	this	is	what	I	use).

T0

= ΔtT0̂
2
s2x

∑
n=0

M−1 [(n+ 1)Δt] + [nΔt]Ĉxx Ĉxx

2

= (0)s2x Ĉxx x M

= ΔtT0̂
1
s2x

∑
n=0

M−1 [(n+ 1)Δt] + [nΔt]Ĉxx Ĉxx

2

2



Decorrelation	time	scale

There	are	several	sources	of	error	entering	formulas	for	 :
estimate	of	the	variance,	estimate	of	the	autocovariance,	and
truncation	of	the	trapezoidal	integration.	The	truncation	of	the
integration	may	be	where	the	estimated	autocovariance	function
reaches	a	constant	value	but	this	may	not	happen	in	practice.
Another	possibility	is	to	integrate	up	to	the	first	zero	crossing	or	up
to	where	the	autocorrelation	is	insignificant.	See	practical	session
this	afternoon.

T0



Auto-correlation	and	effective	degrees	of
freedom

Once	you	have	obtained	an	integral	time	scale	 	and	calculated	the
effective	degrees	of	freedom	 ,	you	may	use	this	parameter	to
calculate	CIs	for	sample	means.

T0
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Auto-correlation	and	effective	degrees	of
freedom

Once	you	have	obtained	an	integral	time	scale	 	and	calculated	the
effective	degrees	of	freedom	 ,	you	may	use	this	parameter	to
calculate	CIs	for	sample	means.

The	formulas	given	previously	do	not	seem	to	be	appropriate	when	
	is	needed	to	assess	estimators	of	auto-covariance/correlation

or	cross-covariance/correlation.	In	these	cases,	Von	Storch	and
Zwiers	(1999),	reference	[6],	gives	the	respective	two	formulas

assuming	you	have	a	constant	time	step	 	for	your	time	series.

T0
Neff

Neff

T0

Δt

T0

Δt

=

=

1 + 2 (kΔt)∑
k=1

+∞

ρ2xx

1 + 2 (kΔt) (kΔt)∑
k=1

+∞

ρxx ρyy

Δt
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3.	A	quick	look	at	"A	leisurely	look	at	the
bootstrap,	the	jackknife,	and	cross-
validation"	by	Efron	and	Gong	(1983)



The	bootstrap	and	the	jackknife

So	far,	we	have	used	theoretical	or	assumed	distributions	of	our
data	in	order	to	derive	standard	errors	and	CIs	of	our	parameter
estimates.	However,	in	many	cases,	like	for	the	correlation
coefficient,	it	is	impossible	to	express	the	variance	in	closed	form.
In	addition,	we	are	often	stuck	with	one	sample	
from	one	experiment	in	order	to	investigate	the	 	population.	On
top	of	this,	our	samples	may	not	be	independent	and	we	run	into
the	issue	of	estimating	the	effective	degrees	of	freedom.

( , ,… , )X1 X2 Xn
x



The	bootstrap	and	the	jackknife

So	far,	we	have	used	theoretical	or	assumed	distributions	of	our
data	in	order	to	derive	standard	errors	and	CIs	of	our	parameter
estimates.	However,	in	many	cases,	like	for	the	correlation
coefficient,	it	is	impossible	to	express	the	variance	in	closed	form.
In	addition,	we	are	often	stuck	with	one	sample	
from	one	experiment	in	order	to	investigate	the	 	population.	On
top	of	this,	our	samples	may	not	be	independent	and	we	run	into
the	issue	of	estimating	the	effective	degrees	of	freedom.

The	idea	of	the	bootstrap	and	jackknife,	combined	with	Monte
Carlo	methods,	is	to	resample	your	original	sample	with
replacements	for	the	bootstrap,	and	with	deletions	for	the
jackknife.	These	methods	are	relatively	easy	to	implement	with	our
fast	and	modern	computers.

( , ,… , )X1 X2 Xn
x



The	bootstrap	:	principle	(1)

Let's	assume	you	are	investigating	a	univariate	or	multivariate	r.v.	
for	which	you	want	to	estimate	a	statistic	 	with	estimator	 ,	using
a	sample	 .

x

ϕ ϕ̂
( , ,… , )X1 X2 Xn



The	bootstrap	:	principle	(1)

Let's	assume	you	are	investigating	a	univariate	or	multivariate	r.v.	
for	which	you	want	to	estimate	a	statistic	 	with	estimator	 ,	using
a	sample	 .

First,	you	draw	randomly	a	bootstrap	sample	 	of
the	same	size	as	your	original	sample.	As	an	example,	if	your
original	sample	if	of	size	 ,	i.e.	 ,	a	bootstrap
sample	with	replacement	may	be	 .

x

ϕ ϕ̂
( , ,… , )X1 X2 Xn
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∗
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( , , ) = ( , , )X∗

1 X
∗
2 X

∗
3 X1 X2 X1



The	bootstrap	:	principle	(1)

Let's	assume	you	are	investigating	a	univariate	or	multivariate	r.v.	
for	which	you	want	to	estimate	a	statistic	 	with	estimator	 ,	using
a	sample	 .

First,	you	draw	randomly	a	bootstrap	sample	 	of
the	same	size	as	your	original	sample.	As	an	example,	if	your
original	sample	if	of	size	 ,	i.e.	 ,	a	bootstrap
sample	with	replacement	may	be	 .

From	the	bootstrap	sample,	you	calculate	a	bootstrap	replication
estimate	of	your	statistic	 .

x

ϕ ϕ̂
( , ,… , )X1 X2 Xn

( , ,… , )X∗
1 X

∗
2 X∗
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N = 3 ( , , )X1 X2 X3
( , , ) = ( , , )X∗
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The	bootstrap	:	principle	(1)

Let's	assume	you	are	investigating	a	univariate	or	multivariate	r.v.	
for	which	you	want	to	estimate	a	statistic	 	with	estimator	 ,	using
a	sample	 .

First,	you	draw	randomly	a	bootstrap	sample	 	of
the	same	size	as	your	original	sample.	As	an	example,	if	your
original	sample	if	of	size	 ,	i.e.	 ,	a	bootstrap
sample	with	replacement	may	be	 .

From	the	bootstrap	sample,	you	calculate	a	bootstrap	replication
estimate	of	your	statistic	 .	You	repeat	this	operation	 	times	to

obtain	 	bootstrap	replications	 .

x

ϕ ϕ̂
( , ,… , )X1 X2 Xn

( , ,… , )X∗
1 X

∗
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N
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2 X

∗
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ϕ̂
∗

B

B , ,… ,ϕ̂
∗(1)

ϕ̂
∗(2)

ϕ̂
∗(B)



The	bootstrap	:	principle	(1)

Let's	assume	you	are	investigating	a	univariate	or	multivariate	r.v.	
for	which	you	want	to	estimate	a	statistic	 	with	estimator	 ,	using
a	sample	 .

First,	you	draw	randomly	a	bootstrap	sample	 	of
the	same	size	as	your	original	sample.	As	an	example,	if	your
original	sample	if	of	size	 ,	i.e.	 ,	a	bootstrap
sample	with	replacement	may	be	 .

From	the	bootstrap	sample,	you	calculate	a	bootstrap	replication
estimate	of	your	statistic	 .	You	repeat	this	operation	 	times	to

obtain	 	bootstrap	replications	 .

You	finally	calculate	(estimate)	the	variance	of	your	replications	as

x

ϕ ϕ̂
( , ,… , )X1 X2 Xn

( , ,… , )X∗
1 X

∗
2 X∗

N

N = 3 ( , , )X1 X2 X3
( , , ) = ( , , )X∗

1 X
∗
2 X

∗
3 X1 X2 X1
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B , ,… ,ϕ̂
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The	bootstrap	:	principle	(2)

You	can	now	use	 	to	derive	a	standard	error	of	your	estimate

as	 	or	use	the	estimated	distribution	of	your	bootstrap

replications	 	to	calculate	CIs.

Example	:	Bootstrap	correlations	between	between	Agulhas	jet	and
boundary	transports	with	 .

Var[ ]ϕ̂
∗

Var[ ]ϕ̂
∗− −−−−−√

, ,… ,ϕ̂
∗(1)

ϕ̂
∗(2)

ϕ̂
∗(B)

B = 1000



The	jackknife	:	principle	(1)

Let's	assume	again	that	you	are	investigating	a	univariate	or
multivariate	r.v.	 	for	which	you	want	to	estimate	a	statistic	 	with
estimator	 ,	using	a	sample	 .

x ϕ

ϕ̂ ( , ,… , )X1 X2 Xn



The	jackknife	:	principle	(1)

Let's	assume	again	that	you	are	investigating	a	univariate	or
multivariate	r.v.	 	for	which	you	want	to	estimate	a	statistic	 	with
estimator	 ,	using	a	sample	 .	A	jackknife	sample
is	obtained	by	deleting	 	data	points	from	your	original	sample	of	

	points.	The	number	of	such	sample	that	can	be	obtained	is	the
number	of	permutations	of	 	objects	taken	 	at	a	time	which	is	

.	If	you	have	 	data	points	there	are	 	permutations
for	the	"delete-1"	jackknife.	The	number	of	of	possible	jackknife
samples	can	become	very	large	so	that	a	subset	need	to	be	choosen.

x ϕ

ϕ̂ ( , ,… , )X1 X2 Xn
J

N
N J

N !/(N − J)! N N



The	jackknife	:	principle	(1)

Let's	assume	again	that	you	are	investigating	a	univariate	or
multivariate	r.v.	 	for	which	you	want	to	estimate	a	statistic	 	with
estimator	 ,	using	a	sample	 .	A	jackknife	sample
is	obtained	by	deleting	 	data	points	from	your	original	sample	of	

	points.	The	number	of	such	sample	that	can	be	obtained	is	the
number	of	permutations	of	 	objects	taken	 	at	a	time	which	is	

.	If	you	have	 	data	points	there	are	 	permutations
for	the	"delete-1"	jackknife.	The	number	of	of	possible	jackknife
samples	can	become	very	large	so	that	a	subset	need	to	be	choosen.

The	formula	for	the	"delete-1"	jackknife	variance	of	your	statistic
estimate	is

x ϕ

ϕ̂ ( , ,… , )X1 X2 Xn
J

N
N J

N !/(N − J)! N N

Var[ ] = ( − where =ϕ̂
J N − 1

N
∑
j=1

N

ϕ̂
∗(j)

ϕ̂
∗(.)

)2 ϕ̂
∗(.) ∑j ϕ̂

∗(j)

N



The	jackknife	:	principle	(2)

The	jackknife	method	can	be	also	used	to	estimate	the	bias	of	your
estimator	as

so	that	the	jackknife	estimate	of	your	statistic	is

[ ] = (N − 1)( − )b̂J ϕ̂ ϕ̂
∗(.)

ϕ̂

= N − (N − 1)ϕ̂J ϕ̂ ϕ̂
∗(.)



The	jackknife	:	principle	(2)

The	jackknife	method	can	be	also	used	to	estimate	the	bias	of	your
estimator	as

so	that	the	jackknife	estimate	of	your	statistic	is

There	are	some	important	details	to	the	bootstrap	and	the	jackknife
methods.	Please	see	Thompson	and	Emery	,	Tichelaar	and	Ruff
(1989)	and	Efron	and	Gong	(1983).

[ ] = (N − 1)( − )b̂J ϕ̂ ϕ̂
∗(.)

ϕ̂

= N − (N − 1)ϕ̂J ϕ̂ ϕ̂
∗(.)
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4.	Covariance	and
correlation	of	bivariate

variables



Bivariate	random	variable

What	if	your	process	of	interest,	or	your	data,	is	a	"vector	variable"?
It	could	be	an	ocean	current,	an	atmospheric	wind,	the	position	of	a
drifter	etc.	Such	variables	are	called	bivariate	variables	in	the
statistics	litterature,	and	are	also	treated	as	r.vs.



Bivariate	random	variable

What	if	your	process	of	interest,	or	your	data,	is	a	"vector	variable"?
It	could	be	an	ocean	current,	an	atmospheric	wind,	the	position	of	a
drifter	etc.	Such	variables	are	called	bivariate	variables	in	the
statistics	litterature,	and	are	also	treated	as	r.vs.	Here	we	will	use
the	formalism	of	time	series,	that	is	we	assume	that	we	have
samples	indexed	along	an	axis	 	that	represents	time.t



Bivariate	random	variable

What	if	your	process	of	interest,	or	your	data,	is	a	"vector	variable"?
It	could	be	an	ocean	current,	an	atmospheric	wind,	the	position	of	a
drifter	etc.	Such	variables	are	called	bivariate	variables	in	the
statistics	litterature,	and	are	also	treated	as	r.vs.	Here	we	will	use
the	formalism	of	time	series,	that	is	we	assume	that	we	have
samples	indexed	along	an	axis	 	that	represents	time.

Let's	consider	a	first	bivariate	variable	 	with	Cartesian
components	 	and	 	(east-west	and	north-south).

t

z(t)
x(t) y(t)



Bivariate	random	variable

What	if	your	process	of	interest,	or	your	data,	is	a	"vector	variable"?
It	could	be	an	ocean	current,	an	atmospheric	wind,	the	position	of	a
drifter	etc.	Such	variables	are	called	bivariate	variables	in	the
statistics	litterature,	and	are	also	treated	as	r.vs.	Here	we	will	use
the	formalism	of	time	series,	that	is	we	assume	that	we	have
samples	indexed	along	an	axis	 	that	represents	time.

Let's	consider	a	first	bivariate	variable	 	with	Cartesian
components	 	and	 	(east-west	and	north-south).

We	can	arrange	the	components	into	a	 	vector	function	of	time

or	alternatively	use	a	complex-valued	notation

where	 	and	 	is	the	complex	argument	(or	polar
angle)	of	 	in	the	interval	 .

t

z(t)
x(t) y(t)

1 × 2

z(t) = [ ] or = [ ]x(t) y(t) zn xn yn

z(t) = x(t) + iy(t) = |z(t)| ,ei arg (z)

i = −1
−−−

√ arg (z)
z [−π,+π]



The	mean	of	bivariate	Data

The	sample	mean	of	the	vector	time	series	 	is	also	a	vector,

that	consists	of	the	sample	means	of	the	 	and	 	components	of	 .
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=
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The	mean	of	bivariate	Data

The	sample	mean	of	the	vector	time	series	 	is	also	a	vector,

that	consists	of	the	sample	means	of	the	 	and	 	components	of	 .

Using	the	complex	notation,	the	sample	mean	is

which	is	complex	number.
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The	variance	of	bivariate	variable

The	variance	of	the	vector-valued	times	series	 	is	not	a	scalar	or	a
vector,	it	is	a	 	matrix

where	“ ”	is	the	matrix	transpose,	 ,	 .

Carrying	out	the	matrix	multiplication	leads	to

The	diagonal	elements	of	 	are	the	sample	variances,	while	the
off-diagonal	gives	the	sample	covariance	between	 	and	 .	Note
that	the	two	off-diagonal	elements	are	identical,	 .
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The	variance	of	bivariate	variable

The	variance	of	a	complex	r.v.,	 ,	needs	a	definition:

where	 	means	the	complex	conjuguate,	i.e.	 .

z = x+ iy

Var[z] = E[(z− (z− )]μz)∗ μz

(. )∗ = x− iyz∗



The	variance	of	bivariate	variable

The	variance	of	a	complex	r.v.,	 ,	needs	a	definition:

where	 	means	the	complex	conjuguate,	i.e.	 .

Substituting	and	expanding	the	previous	expression	gives

The	variance	of	a	"physical	vector"	written	as	a	complex	r.v.	is	a
single	real	number	which	is	the	sum	of	the	variance	of	its
components.	It	is	different	from	the	 	matrix	of	variances	and
covariances	of	its	components	seen	in	the	previous	slide.

z = x+ iy

Var[z] = E[(z− (z− )]μz)∗ μz

(. )∗ = x− iyz∗

Var[z] =
=
E[(x− ] + E[(y− ]μx)2 μy)2

Var[x] + Var[y]

2 × 2



The	variance	of	bivariate	variable

The	variance	of	a	complex	r.v.,	 ,	needs	a	definition:

where	 	means	the	complex	conjuguate,	i.e.	 .

Substituting	and	expanding	the	previous	expression	gives

The	variance	of	a	"physical	vector"	written	as	a	complex	r.v.	is	a
single	real	number	which	is	the	sum	of	the	variance	of	its
components.	It	is	different	from	the	 	matrix	of	variances	and
covariances	of	its	components	seen	in	the	previous	slide.	If	
represents	an	ocean	current,	 	is	proportional	to	the	average
eddy	kinetic	energy	(density)	

z = x+ iy

Var[z] = E[(z− (z− )]μz)∗ μz

(. )∗ = x− iyz∗

Var[z] =
=
E[(x− ] + E[(y− ]μx)2 μy)2

Var[x] + Var[y]

2 × 2
z

Var[z]
KE = (< > + < >)/2x′2 y ′2



The	covariance	of	bivariate	variables

In	addition	to	 ,	let's	consider	a	second	bivariate	variable	
with	Cartesian	components	 	and	 .

z(t) w(t)
g(t) h(t)



The	covariance	of	bivariate	variables

In	addition	to	 ,	let's	consider	a	second	bivariate	variable	
with	Cartesian	components	 	and	 .	The	cross	covariance
function	at	zero	lag,	or	simply	the	covariance	between	the
components	of	 	and	 	can	be	formed	as

z(t) w(t)
g(t) h(t)

z w

E{ w}zT =

=

E{[ ]}(x− )(g− )μx μg

(y− )(g− )μy μg

(x− )(h− )μx μh

(y− )(h− )μy μh

[ ]Cxg

Cyg

Cxh

Cyh



The	covariance	of	bivariate	variables

In	addition	to	 ,	let's	consider	a	second	bivariate	variable	
with	Cartesian	components	 	and	 .	The	cross	covariance
function	at	zero	lag,	or	simply	the	covariance	between	the
components	of	 	and	 	can	be	formed	as

The	meaning	of	each	individual	entry	of	this	matrix	is	obvious	but
the	interpretation	of	all	of	them	at	once	may	be	less	so.

z(t) w(t)
g(t) h(t)

z w

E{ w}zT =

=

E{[ ]}(x− )(g− )μx μg

(y− )(g− )μy μg

(x− )(h− )μx μh

(y− )(h− )μy μh

[ ]Cxg

Cyg

Cxh

Cyh



The	covariance	of	bivariate	variables

Alternatively,	let's	use	the	complex	representations	of	 	and	

but	assume	for	simplicity	that	 .

z w

z

w

=
=
x+ iy
g+ ih

= = 0μz μw



The	covariance	of	bivariate	variables

Alternatively,	let's	use	the	complex	representations	of	 	and	

but	assume	for	simplicity	that	 .

A	definition	of	the	covariance	between	these	two	complex	r.v.	is

z w

z

w

=
=
x+ iy
g+ ih

= = 0μz μw

Czw =
=
=

E[ w]z∗

E[(x− iy)(g+ ih)]
E[xg] + E[yh] + i(E[xh] + E[−yg]).



The	covariance	of	bivariate	variables

Alternatively,	let's	use	the	complex	representations	of	 	and	

but	assume	for	simplicity	that	 .

A	definition	of	the	covariance	between	these	two	complex	r.v.	is

Beware	that	the	definition	of	the	covariance	between	complex	r.v.
may	differ.	Sometimes	it	is	defined	as	 .	Our	convention	here
is	the	same	as	Matlab.

z w

z

w

=
=
x+ iy
g+ ih

= = 0μz μw

Czw =
=
=

E[ w]z∗

E[(x− iy)(g+ ih)]
E[xg] + E[yh] + i(E[xh] + E[−yg]).

E[z ]w∗



The	covariance	of	bivariate	variables

Simple	geometry	reveals	that	the	real	part	of	the	complex
covariance	is	the	expectation	of	the	dot	product	[or	inner	product,
noted	 ]	while	the	imaginary	part	is	the	expectation	of	the
magnitude	of	the	vector	cross	product	[or	outer	product,	noted	

]:

where	 	is	the	instantaneous	geometric	angle	in	the	Cartesian	plane
between	 	and	 ,	measured	positively	counterclockwise	relative	to
the	geometric	angle	of	 .

(⋅)

(×)

Czw =
=
=

E[xg] + E[yh] + i(E[xh] + E[−yg])
E[z ⋅ w] + iE[||z × w||]
E[|z||w| cos θ] + iE[|z||w| sin θ]

θ
z w

z



The	covariance	of	bivariate	variables

= E[|z||w| cos θ] + iE[|z||w| sin θ]Czw



The	covariance	of	bivariate	variables

The	covariance	of	 	and	 	is	a	complex	number	which	argument,	or
phase,	is

= E[|z||w| cos θ] + iE[|z||w| sin θ]Czw

z w

Arg[ ] = atan{ } ≠ E[θ].Czw
E[|z||w| sin θ]
E[|z||w| cos θ]



The	covariance	of	bivariate	variables

The	covariance	of	 	and	 	is	a	complex	number	which	argument,	or
phase,	is

The	absolute	value	of	 	is	clearly	a	measure	of	the	covariance
between	the	two	bivariate	variables,	but	its	phase	is	not	 :	it	is
not	the	expectation,	or	mean,	of	the	geometric	angle	between	 	and	

.

= E[|z||w| cos θ] + iE[|z||w| sin θ]Czw

z w

Arg[ ] = atan{ } ≠ E[θ].Czw
E[|z||w| sin θ]
E[|z||w| cos θ]

Czw
E[θ(t)]

z
w



The	covariance	of	bivariate	variables

The	covariance	of	 	and	 	is	a	complex	number	which	argument,	or
phase,	is

The	absolute	value	of	 	is	clearly	a	measure	of	the	covariance
between	the	two	bivariate	variables,	but	its	phase	is	not	 :	it	is
not	the	expectation,	or	mean,	of	the	geometric	angle	between	 	and	

.

However,	 	can	still	be	seen	as	an	indication	of	the	relative
angle	of	covariance.	If	 	this	indicates	that	the
covariance	occurs	with	 	and	 	aligned	and	pointing	in	the	same
direction,	and	if	 	this	indicates	that	the	covariance
occurs	with	 	at	right	angle	counterclockwise	from	 .

= E[|z||w| cos θ] + iE[|z||w| sin θ]Czw

z w

Arg[ ] = atan{ } ≠ E[θ].Czw
E[|z||w| sin θ]
E[|z||w| cos θ]

Czw
E[θ(t)]

z
w

Arg[ ]Czw
Arg[ ] = 0Czw
z w

Arg[ ] = π/2Czw
w z



The	correlation	of	bivariate	variables

From	the	complex	covariance,	we	can	define	the	complex
correlation	between	 	and	 	as

Since	 	and	 	are	real	numbers,	the	phase	of	 	is	the	same
phase	as	the	phase	of	 :	

z w

≡ = | |ρzw
Czw

CzzCww
− −−−−−√

ρzw e
iArg[ ]ρzw

Czz Cww ρzw
Czw Arg[ ] = Arg[ ]ρzw Czw



The	correlation	of	bivariate	variables

From	the	complex	covariance,	we	can	define	the	complex
correlation	between	 	and	 	as

Since	 	and	 	are	real	numbers,	the	phase	of	 	is	the	same
phase	as	the	phase	of	 :	

Note	that	the	"vector"	regression	model	for	 	based	on	the
covariance	between	 	and	 	is	(see	Lecture	3)

which	shows	that	the	regressed	vector	 	is	rotated
counterclockwise	by	 	from	the	direction	of	 .	This	is
valid	after	removing	the	means.

z w

≡ = | |ρzw
Czw

CzzCww
− −−−−−√

ρzw e
iArg[ ]ρzw

Czz Cww ρzw
Czw Arg[ ] = Arg[ ]ρzw Czw

w
z w

(t) = z(t) = z(t)wm
Czw
Czz

| |Czw

Czz
eiArg[ ]Czw

(t)wm
Arg[ ]Czw z(t)



Panel	c	is	the	correlation	
between	the	10-m	wind	at	170E,
0N	and	10-m	winds	at	all	other
locations	from	ECMWF
reanalyses.	The	real	part	of	 	is
shown	in	panel	a	and	the
imaginary	part	is	shown	in	panel
b	as	a	pure	imaginary	number	so
that	c	=	a	+	b.

The	correlation	of	bivariate	variables

ρ

ρ



The	complementary	of	a	vector

The	complementary	of	a	vector	 ,	noted	 ,	is,	using	complex
notation

z zc

≡ = x− iyzc z∗



The	complementary	of	a	vector

The	complementary	of	a	vector	 ,	noted	 ,	is,	using	complex
notation

Geometrically,	it	is	the	vector	 	flipped	with	respect	to	the	real	axis.
If	a	bivariate	time	series	represents	a	vector	rotating	in	one
direction,	then	its	complementary	is	rotating	in	the	opposite
direction.

z zc

≡ = x− iyzc z∗

z



The	complementary	correlation	of
bivariate	variables

The	complementary	covariance	between	 	and	 	is

The	complementary	or	reflectional	correlation	is

where	

z w

C wz c =
=
=

E[( w]z∗)∗

E[(x+ iy)(g+ ih)]
E[xg] − E[yh] + i(E[xh] + E[yg]

≡ρ wzc
C wzc

Cz cz cCww
− −−−−−−√

=Cz cz c Czz



Auto-covariance	and	variance	ellipses

The	special	cases	of	standard	and	complementary	auto	covariances
of	a	physical	vector	with	itself	can	be	related	to	the	concept	of
variance	or	standard	deviation	ellipses.



Auto-covariance	and	variance	ellipses

The	special	cases	of	standard	and	complementary	auto	covariances
of	a	physical	vector	with	itself	can	be	related	to	the	concept	of
variance	or	standard	deviation	ellipses.

For	a	bivariate	r.v.	 ,	the	fixed	angle	 	between	the	real	axis
positive	direction	and	the	so-called	major	axis	of	the	standard
deviation	ellipse	is

while	 	defines	the	direction	of	the	so-called	minor	axis.

z θM

= Arg [ ] = arctan [ ] ,θM
1
2

C zz c
1
2

2E[xy]
E[ ] − E[ ]x2 y2

+ π/2θM



Auto-covariance	and	variance	ellipses

The	variances	 	and	 	of	the	bivariate	variable	along	the	major
and	minor	axes,	respectively,	are	given	by

Anticipating	Lecture	5,	 	and	 	are	the	2	eigen	values	of	the	
cross	covariance	matrix	of	the	Cartesian	component,	while	the
associated	eigen	vectors	are	 	and	

.

a2v b2v

a2v =

=

[ + | |]
1
2
Czz C zz c

{E[ ] + E[ ] + } ,
1
2

x2 y2 (E[ ] − E[ ] + 4(E[xy]x2 y2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−−√

b2v =

=

[ − | |]
1
2
Czz C zz c

{E[ ] + E[ ] − } .
1
2

x2 y2 (E[ ] − E + 4(E[xy]x2 y2)2 )2
− −−−−−−−−−−−−−−−−−−−−−√

a2v b2v 2 × 2

[cos , sin ]θM θM
[− sin , cos ]θM θM



Auto-covariance	and	variance	ellipses

The	ratio	of	the	absolute	value	of	the	complementary	auto
correlation	to	the	absolute	value	of	the	auto	correlation	is	a	measure
of	the	absolute	linearity	of	the	standard	deviation	ellipse

If	 	the	ellipse	is	flat	and	if	 	the	ellipse	is	a	circle.	 	is	a
relative	of	the	more	commonly	known	eccentricity	parameter	of	the
ellipse	which	is

See	Lilly	and	Gascard	(2006)	and	Lilly	J,	Olhede	S.	(2010).

|λ| = = .
C zz c

| |Czz

−a2v b2v

+a2v b2v

|λ| = 1 |λ| = 0 λ

e = .1 −
b2v

a2v

− −−−−−√

http://www.nonlin-processes-geophys.net/13/467/2006/
http://dx.doi.org/10.1109/TSP.2009.2031729


Standard	deviation	or	variance	ellipses

If	your	complex	signal	is	 	which
represents	an	ellipse,	then	the	major	axis	and	minor	semi-axis	of
the	standard	deviation	ellipse	are	 	and	

.

z(t) = [a cos(t) + i sin(t)]eiθ

= < aav /2a2
− −−−

√
= < bbv /2b2

− −−−
√



Standard	deviation	or	variance	ellipses

Example:	Mean	currents	(blue)	and	standard	deviation	ellipses
(light	blue)	of	near	bottom	currents	from	the	RAPID	WAVE
experiment.	Orange	axes	show	topography	gradient.	See	Hughes	et
al.	2013

http://dx.doi.org/10.1175/JTECH-D-12-00149.1


Standard	deviation	or	variance	ellipses

Example:	Complementary	auto	correlation	of	10-m	winds	at	all
locations	from	ECMWF	reanalyses.



Standard	deviation	or	variance	ellipses

The	standard	ellipse	is	a	statistical	description	of	the	variance	of	a
bivariate	variable	and	does	not	mean	that	any	underlying	variability
is	actually	elliptical	in	time.	Standard	deviation	ellipses	can	be
computed	from	a	number	of	individual	pairs	of	Cartesian
components	of	a	bivariate	quantity	without	these	points	actually
forming	consecutive	time	series.



Standard	deviation	or	variance	ellipses

The	standard	ellipse	is	a	statistical	description	of	the	variance	of	a
bivariate	variable	and	does	not	mean	that	any	underlying	variability
is	actually	elliptical	in	time.	Standard	deviation	ellipses	can	be
computed	from	a	number	of	individual	pairs	of	Cartesian
components	of	a	bivariate	quantity	without	these	points	actually
forming	consecutive	time	series.

Example:	Variance	ellipses	from	drifters	from	Lumpkin	and
Johnson	2013

http://dx.doi.org/10.1002/jgrc.20210


Practical	session

Please	download	data	at	the	following	link:

Please	download	the	Matlab	code	at	the	following	link:

Make	sure	you	have	installed	and	tested	the	free	jLab	Matlab
toolbox	from	Jonathan	Lilly	at	www.jmlilly.net/jmlsoft.html

https://www.jmlilly.net/jmlsoft.html

