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Foreword

Statistics	(noun,	plural	in	form	but	singular	or	plural	in
construction)

1.	 Merriam-Webster:	a	branch	of	mathematics	dealing	with	the
collection,	analysis,	interpretation,	and	presentation	of	masses
of	numerical	data
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Statistics	(noun,	plural	in	form	but	singular	or	plural	in
construction)

1.	 Merriam-Webster:	a	branch	of	mathematics	dealing
with	the	collection,	analysis,	interpretation,	and
presentation	of	masses	of	numerical	data

2.	 Oxford	dictionnary	of	English:

a.	the	practice	or	science	of	collecting	and	analysing
numerical	data	in	large	quantities,	especially	for	the	purpose
of	inferring	proportions	in	a	whole	from	those	in	a
representative	sample.

b.	a	collection	of	quantitative	data	(e.g.	The	statistics	of	the
data	are	unknown.)
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Statistics	(noun,	plural	in	form	but	singular	or	plural	in
construction)

1.	 Merriam-Webster:	a	branch	of	mathematics	dealing
with	the	collection,	analysis,	interpretation,	and
presentation	of	masses	of	numerical	data

2.	 Oxford	dictionnary	of	English:

a.	the	practice	or	science	of	collecting	and	analysing
numerical	data	in	large	quantities,	especially	for	the	purpose
of	inferring	proportions	in	a	whole	from	those	in	a
representative	sample.

b.	a	collection	of	quantitative	data	(e.g.	The	statistics	of	the
data	are	unknown.)

Statistic	(noun)	a	single	term	or	datum	in	a	collection	of	statistics
(e.g.	The	mean	of	the	data	is	zero.)
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Foreword

A	quote	from	Data	Analysis	Methods	in	Physical	Oceanography,
Thompson	and	Emery,	Third	Edition,	2014:

"Statistical	methods	are	essential	to	determining	the	value	of	the
data	and	to	decide	how	much	of	it	can	be	considered	useful	for	the
intended	analysis.	This	statistical	approach	arises	from	the
fundamental	complexity	of	the	ocean,	a	multivariate	system	with
many	degrees	of	freedom	in	which	nonlinear	dynamics	and
sampling	limitations	make	it	difficult	to	separate	scales	of
variability."

What	do	multivariate,	degrees	of	freedom,	sampling,	and
variability	mean	in	this	context?
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Introduction

In	oceanography	and	atmospheric	science,	we	have	at	our	disposal	a
number	of	physical	theories,	that	is	equations,	that	describe	the
spatial	and	temporal	variability	of	the	climate	system.



Introduction

In	oceanography	and	atmospheric	science,	we	have	at	our	disposal	a
number	of	physical	theories,	that	is	equations,	that	describe	the
spatial	and	temporal	variability	of	the	climate	system.

Specifically,	in	geophysical	fluid	dynamics,	the	Navier-Stokes
equations	describe	the	motion	of	a	fluid	in	2D	or	3D.	Yet,	we	do	not
know	if	these	equations	have	reasonable	physical	solutions	(If	you
figure	this	out,	there's	a	$1M	prize	from	the	Clay	Mathematics
Institute).	Assuming	that	they	do,	then	the	ocean,	as	an	example,
can	be	seen	as	being	a	deterministic	system,	which	means	that
mathematical	expressions	can	be	used	to	describe	completely	the
velocity	and	pressure	field	(e.g.	 ).p(x, t) = cos(ωt− k ⋅ x)p0

http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
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In	oceanography	and	atmospheric	science,	we	have	at	our	disposal	a
number	of	physical	theories,	that	is	equations,	that	describe	the
spatial	and	temporal	variability	of	the	climate	system.

Specifically,	in	geophysical	fluid	dynamics,	the	Navier-Stokes
equations	describe	the	motion	of	a	fluid	in	2D	or	3D.	Yet,	we	do	not
know	if	these	equations	have	reasonable	physical	solutions	(If	you
figure	this	out,	there's	a	$1M	prize	from	the	Clay	Mathematics
Institute).	Assuming	that	they	do,	then	the	ocean,	as	an	example,
can	be	seen	as	being	a	deterministic	system,	which	means	that
mathematical	expressions	can	be	used	to	describe	completely	the
velocity	and	pressure	field	(e.g.	 ).

Yet,	even	if	we	do	not	know	the	analytical	solutions,	we	can
discretize	the	equations	within	a	computer	models	to	obtain
approximate	solutions	describing	the	flow	deterministically	...	(in
theory).

p(x, t) = cos(ωt− k ⋅ x)p0

http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation


Introduction

A	deterministic	approach	is	not	realistic	because	of	three	commonly
acknowledged	reasons.	The	ocean	and	the	atmosphere	are	complex,
nonlinear,	and	unpredictable.



Introduction

A	deterministic	approach	is	not	realistic	because	of	three	commonly
acknowledged	reasons.	The	ocean	and	the	atmosphere	are	complex,
nonlinear,	and	unpredictable.

As	an	example,	there	is	an	estimated	 	water	molecules	in
the	ocean	(that's	complexity)	so	that	there	are	too	many	variables,
and	too	many	initial	and	boundary	conditions	to	be	specified,
(jointly	forming	the	number	of	degrees	of	freedom	of	the	system)	in
order	to	solve	all	equations	numerically	in	a	computer	model.
Because	many	variables	cannot	be	observed,	or	are	unspecified	at
the	start	of	a	simulation,	outcomes	will	appear	random	to	the
observer	(that's	unpredictability).

4.7 × 1046
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As	an	example,	there	is	an	estimated	 	water	molecules	in
the	ocean	(that's	complexity)	so	that	there	are	too	many	variables,
and	too	many	initial	and	boundary	conditions	to	be	specified,
(jointly	forming	the	number	of	degrees	of	freedom	of	the	system)	in
order	to	solve	all	equations	numerically	in	a	computer	model.
Because	many	variables	cannot	be	observed,	or	are	unspecified	at
the	start	of	a	simulation,	outcomes	will	appear	random	to	the
observer	(that's	unpredictability).

Finally,	ocean	and	atmosphere	are	nonlinear	which	means	that	you
cannot	really	find	a	portion	of	the	system	(e.g.	surface	gravity
waves)	with	a	finite	number	of	degrees	of	freedom	whose	evolution
is	isolated	and	can	be	made	deterministic.	Unknown	perturbations
will	render	the	observations	to	contain	randomness,	or	noise.

4.7 × 1046



Introduction

Once	we	accept	that	the	climate	is	not	a	purely	deterministic
system,	but	contain	randomness,	we	can	rely	on	a	suite	of	tools
especially	applicable	to	stochastic	systems	or	processes.

stochastic	(adjective,	technical)

having	a	random	probability	distribution	or	pattern	that	may	be
analysed	statistically	but	may	not	be	predicted	precisely.

As	a	consequence,	in	the	rest	of	this	lecture,	we	will	often	discuss
random	variables	(hereafter	r.v.),	that	is	variables	to	which
statistical	theory	can	be	applied.	In	addition,	we	will	take	the
approach	that	our	system,	or	that	our	observational	data,	can	be
separated	into	signal	plus	noise.	As	an	example,	estimation	of	the
seasonal	cycle	of	ocean	temperature	(the	sought	after	signal)	is
disturbed	by	changes	due	to	ocean	currents,	but	also	changes	due	to
the	imperfections	of	your	temperature	sensors,	etc.



2.	Estimation	vs	truth



Estimation	vs	truth

We	are	in	the	business	of	estimation:	we	try	to	describe	and/or
understand	the	climate	system	by	estimating	the	value	of	a	random
variable.	This	r.v.	may	be	a	physical	variable	such	as	air
temperature,	water	vapor,	sea	ice	area,	sea	surface	temperature,	sea
level,	snow	cover,	glacier	volume,	CO 	concentration,	etc.2
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We	are	in	the	business	of	estimation:	we	try	to	describe	and/or
understand	the	climate	system	by	estimating	the	value	of	a	random
variable.	This	r.v.	may	be	a	physical	variable	such	as	air
temperature,	water	vapor,	sea	ice	area,	sea	surface	temperature,	sea
level,	snow	cover,	glacier	volume,	CO 	concentration,	etc.

Or	it	may	be	a	variable	derived	from	one	or	several	other	r.v.,	in
essence	a	parameter.	This	parameter	is	itself	a	r.v.	As	an	example
ocean	heat	content,	the	daily	mean	temperature,	the	decadal
temperature	trend,	the	acoustic	travel	time	in	water,	the	amplitude
of	the	seasonal	cyle	of	temperature,	the	adiabatic	lapse	rate,	the
power	spectral	density	function	of	velocity,	the	precipitation	rate,
etc.

2
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understand	the	climate	system	by	estimating	the	value	of	a	random
variable.	This	r.v.	may	be	a	physical	variable	such	as	air
temperature,	water	vapor,	sea	ice	area,	sea	surface	temperature,	sea
level,	snow	cover,	glacier	volume,	CO 	concentration,	etc.
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essence	a	parameter.	This	parameter	is	itself	a	r.v.	As	an	example
ocean	heat	content,	the	daily	mean	temperature,	the	decadal
temperature	trend,	the	acoustic	travel	time	in	water,	the	amplitude
of	the	seasonal	cyle	of	temperature,	the	adiabatic	lapse	rate,	the
power	spectral	density	function	of	velocity,	the	precipitation	rate,
etc.

The	distinction	between	variable	and	parameter	is	maybe	semantic.
In	any	case,	let's	call	 	a	r.v.	of	interest.

2
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Estimation	vs	truth

Unfortunatelly,	it	is	likely	that	we	will	never	know	 	exactly,	but
only	access	an	estimate	that	we	will	note	 	( 	"hat").	This	estimate
means	we	use	a	given	method	or	a	given	instrument	to	measure	or
calculate	 .

ϕ

ϕ̂ ϕ
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Estimation	vs	truth

Unfortunatelly,	it	is	likely	that	we	will	never	know	 	exactly,	but
only	access	an	estimate	that	we	will	note	 	( 	"hat").	This	estimate
means	we	use	a	given	method	or	a	given	instrument	to	measure	or
calculate	 .

As	an	example,	we	want	to	know	the	temperature	of	the	room.	We
can:

1.	 use	one	temperature	sensor	at	one	fixed	location	(in	the	middle
of	the	room),	repeatedly	through	time,	 	times.

2.	 use	 	temperature	sensors,	once.
3.	 use	one	temperature	sensor,	used	repeatedly	 	times,	each	time

in	a	different	corner	of	the	room
4.	 etc.

Each	one	of	these	methods	leads	to	one	estimate	of	"the
temperature	of	the	room".

ϕ

ϕ̂ ϕ

ϕ

N
N

N



Expectation	of	an	estimate

Let's	assume	that	we	design	an	experiment	and	obtain	 ,	repeatedly
	times.	The	expectation	value	of	 ,	denoted	 ,	is

where	 	is	the	estimate	from	the	 -th	experiment.	Unfortunatelly,
since	we	must	have	 ,	the	expectation	cannot	be	known.

ϕ̂

N ϕ̂ E[ ]ϕ̂

E[ ] =ϕ̂ lim
N→∞

1
N

∑
n=0

N

ϕ̂n

ϕ̂n n
N →∞
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	times.	The	expectation	value	of	 ,	denoted	 ,	is

where	 	is	the	estimate	from	the	 -th	experiment.	Unfortunatelly,
since	we	must	have	 ,	the	expectation	cannot	be	known.

However,	if	we	can	reasonably	make	some	assumptions	about	the
statistics	of	the	r.v.	itself,	and/or	if	we	know	the	specifications	of
our	instruments,	then	we	can	sometimes	derive	the	expectation	of
our	estimator.

Why	is	this	important?
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Expectation	of	an	estimate

Let's	assume	that	we	design	an	experiment	and	obtain	 ,	repeatedly
	times.	The	expectation	value	of	 ,	denoted	 ,	is

where	 	is	the	estimate	from	the	 -th	experiment.	Unfortunatelly,
since	we	must	have	 ,	the	expectation	cannot	be	known.

However,	if	we	can	reasonably	make	some	assumptions	about	the
statistics	of	the	r.v.	itself,	and/or	if	we	know	the	specifications	of
our	instruments,	then	we	can	sometimes	derive	the	expectation	of
our	estimator.

Why	is	this	important?	To	assess	how	good	our	estimate	is.
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Expectation	of	an	estimate

Let's	assume	that	we	have	access	to	the	expectation	 	of	an
estimator	 	of	the	r.v.	 .
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Expectation	of	an	estimate

Let's	assume	that	we	have	access	to	the	expectation	 	of	an
estimator	 	of	the	r.v.	 .

If	we	are	lucky,	 ,	and	the	estimator	 	is	said	to	be
unbiased.
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E[ ] = ϕϕ̂ ϕ̂



Expectation	of	an	estimate

Let's	assume	that	we	have	access	to	the	expectation	 	of	an
estimator	 	of	the	r.v.	 .

If	we	are	lucky,	 ,	and	the	estimator	 	is	said	to	be
unbiased.	Otherwise,	it	is	said	to	be	biased	and	we	define	the	bias	of
the	estimator:

which	constitutes	a	systematic	error	of	the	estimate.
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Expectation	of	an	estimate

Let's	assume	that	we	have	access	to	the	expectation	 	of	an
estimator	 	of	the	r.v.	 .

If	we	are	lucky,	 ,	and	the	estimator	 	is	said	to	be
unbiased.	Otherwise,	it	is	said	to	be	biased	and	we	define	the	bias	of
the	estimator:

which	constitutes	a	systematic	error	of	the	estimate.

In	addition,	the	value	of	the	estimator	will	change	from	one
experiment	to	the	next,	so	we	define	the	variance	of	the	estimator,
denoted	 ,	as

which	constitutes	the	random	error	of	the	estimate.

E[ ]ϕ̂
ϕ̂ ϕ

E[ ] = ϕϕ̂ ϕ̂

b[ ] = E[ ] − ϕ,ϕ̂ ϕ̂

Var[ ]ϕ̂

Var[ ] = E[( − E[ ] ],ϕ̂ ϕ̂ ϕ̂ )2



Expectation	of	an	estimate

The	bias	and	the	variance	of	the	estimator	contributes	both	to	its
total	error,	which	can	be	assessed	by	the	mean	square	error	(MSE):

usually	reported	as	the	root	mean	square	error:

Another	sometimes	useful	quantity	is	the	normalized	rms	error:

which	is	unitless	and	can	be	reported	as	a	percentage.

MSE[ ] = E[( − ϕ ] = Var[ ] + (b[ ] ,ϕ̂ ϕ̂ )2 ϕ̂ ϕ̂ )2

RMS = =MSE[ ]ϕ̂
− −−−−−−√ Var[ ] + (b[ ]ϕ̂ ϕ̂ )2

− −−−−−−−−−−−−√

ε[ϕ] = for ϕ ≠ 0,
E[( − ϕ ]ϕ̂ )2
− −−−−−−−−√

ϕ



Estimation	vs	truth

From	the	International	Organization	for	Standardization	(ISO)
publication	5725-1:1994	Accuracy	(trueness	and	precision)	of
measurement	methods	and	results	—	Part	1:	General	principles
and	definitions

Introduction	0.1	ISO	5725	uses	two	terms	"trueness"	and
"precision"	to	describe	the	accuracy	of	a	measurement	method.
"Trueness"	refers	to	the	closeness	of	agreement	between	the
arithmetic	mean	of	a	large	number	of	test	results	and	the	true	or
accepted	reference	value.	"Precision"	refers	to	the	closeness	of
agreement	between	test	results.

https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en


Example

Specification	sheets	of	Seabird	911	CTD	Plus	sensors:



Example

Specification	sheets	of	Seabird	911	CTD	Plus	sensors:

An	interpretation	is	that	the	accuracy	is	the	total	error,	or	
error	which	is	originally	only	the	random	error.	The	stability
implies	that	the	bias,	originally	zero,	increases	with	time.

RMS



2.	Fundamental	statistics



Fundamental	statistics

Let's	consider	a	random	variable	 ,	for	which	we	obtain	(that	is
measure,	calculate)	values	 ,	dependent	on	an	index	 	along	a
given	dimension,	or	scale	(e.g.	temperature	as	a	function	of	time,
sea	level	along	a	satellite	track,	oxygen	concentration	as	a	function
of	depth	etc).

x
Xn n



Fundamental	statistics

Let's	consider	a	random	variable	 ,	for	which	we	obtain	(that	is
measure,	calculate)	values	 ,	dependent	on	an	index	 	along	a
given	dimension,	or	scale	(e.g.	temperature	as	a	function	of	time,
sea	level	along	a	satellite	track,	oxygen	concentration	as	a	function
of	depth	etc).

Statistical	theory	often	considers	r.v.	that	are	continuous,	as	in	
.	Since	we	are	typically	dealing	with	digital	or	numerical	data

that	are	discrete,	we	will	take	a	discrete	approach	in	this	course,	as
in	 	where	 	is	the	step	of	the	record.

Sometimes,	we	will	need	to	revert	to	continuous	notations	when
needed;	as	an	example:

x
Xn n

X(t)

= X( ) = X(nΔt)Xn tn Δt

Δt⟺ X(t)dt, T = NΔt∑
n=0

N

Xn ∫ T

0



Mean

The	first	statistical	quantity	to	consider	is	the	true	mean,
population	mean,	or	expectation	of	 :x

≡ E[X] =μx lim
N→∞

1
N

∑
n=1

N

Xn



Mean

The	first	statistical	quantity	to	consider	is	the	true	mean,
population	mean,	or	expectation	of	 :

Unfortunatelly,	we	only	have	a	finite	numbers	of	estimates	
	so	we	compute	the	sample	mean

where	the	last	equality	means	that	the	sample	mean	is	an
estimator	of	the	true	mean	of	 .

x

≡ E[X] =μx lim
N→∞

1
N

∑
n=1

N

Xn

, n = 1,…,NXn

≡ =X
¯ ¯¯̄ 1

N
∑
n=1

N

Xn μ̂x

x



Variance

The	next	statistical	quantity	of	interest	is	the	variance	of	 :

	is	called	the	standard	deviation.

x

≡ E[(X − ].σ2x μx)2

=σx σ2x
−−√



Variance

The	next	statistical	quantity	of	interest	is	the	variance	of	 :

	is	called	the	standard	deviation.

An	estimator	of	 	is	the	sample	variance	 :

Note	the	factor	 	instead	of	 	in	the	previous	expression;	see
section	4.1	of	reference	[1]	for	an	explanation.

x

≡ E[(X − ].σ2x μx)2

=σx σ2x
−−√

σ2x s2x

= = ( − =s2x σ̂
2
x

1
N − 1

∑
n=1

N

Xn X
¯ ¯¯̄ )2

1
N − 1

∑
n=1

N ( − )Xn

1
N

∑
n=1

N

Xn

2

1
N−1

1
N
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Mean

Let's	go	back	to	the	estimator	 	of	 .	It	is	an	estimator,	so	is	it
biased?	How	much	does	it	vary?
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Let's	go	back	to	the	estimator	 	of	 .	It	is	an	estimator,	so	is	it
biased?	How	much	does	it	vary?

The	expectation	is	an	mathematical	operator	which	is	linear:

X
¯ ¯¯̄

μx

E[aX + bY ] = aE[X] + bE[Y ]
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Mean

Let's	go	back	to	the	estimator	 	of	 .	It	is	an	estimator,	so	is	it
biased?	How	much	does	it	vary?

The	expectation	is	an	mathematical	operator	which	is	linear:

Let's	use	this	rule	for	 :

Note	that	 	is	a	definition,	valid	for	all	 !

X
¯ ¯¯̄
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E[aX + bY ] = aE[X] + bE[Y ]
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Let's	go	back	to	the	estimator	 	of	 .	It	is	an	estimator,	so	is	it
biased?	How	much	does	it	vary?

The	expectation	is	an	mathematical	operator	which	is	linear:

Let's	use	this	rule	for	 :

Note	that	 	is	a	definition,	valid	for	all	 !

Since	 	then	it	is	said	that	 	is	an	unbiased	estimator	of	
	(see	slide	on	bias).	This	means	that	the	more	observations	of	

we	obtain,	the	more	accurate	the	estimation	of	the	mean	will	be.
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Mean

Let's	go	back	to	the	estimator	 	of	 .	It	is	an	estimator,	so	is	it
biased?	How	much	does	it	vary?

The	expectation	is	an	mathematical	operator	which	is	linear:

Let's	use	this	rule	for	 :

Note	that	 	is	a	definition,	valid	for	all	 !

Since	 	then	it	is	said	that	 	is	an	unbiased	estimator	of	
	(see	slide	on	bias).	This	means	that	the	more	observations	of	

we	obtain,	the	more	accurate	the	estimation	of	the	mean	will	be.
That	does	not	mean	that	 	is	free	of	errors	...
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Mean

How	much	does	the	sample	mean	estimator	vary?	Recall	the
definition	of	the	 	of	an	estimator;	for	 	it	isMSE X
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Mean

How	much	does	the	sample	mean	estimator	vary?	Recall	the
definition	of	the	 	of	an	estimator;	for	 	it	is

Under	some	assumption	(that	the	 	are	independent),	it	can	be
shown	(your	homework,	or	section	4.1	of	reference	[1])	that

The	variance	of	the	mean	estimator	is	the	true	variance	of
the	data	( )	divided	by	the	number	of	observation	( ).

MSE X
¯ ¯¯̄
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Mean

How	much	does	the	sample	mean	estimator	vary?	Recall	the
definition	of	the	 	of	an	estimator;	for	 	it	is

Under	some	assumption	(that	the	 	are	independent),	it	can	be
shown	(your	homework,	or	section	4.1	of	reference	[1])	that

The	variance	of	the	mean	estimator	is	the	true	variance	of
the	data	( )	divided	by	the	number	of	observation	( ).	Since	we
typically	do	not	know	the	true	variance,	we	substitute	for	the	sample
variance	to	obtain	the	standard	error	of	the	mean,	or	random	error
for	the	mean:

MSE X
¯ ¯¯̄
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Mean

	is	a	measure	of	the	uncertainty,	or	of	our	capability	of
estimating	the	mean	value	of	 .
s.e.[ ]X¯ ¯¯̄

x



Example	from	Beal,	L.	M.	et	al.	(2015),
Capturing	the	Transport	Variability	of	a	Western
Boundary	Jet:	Results	from	the	Agulhas	Current
Time-series	experiment	(ACT),	J.	Phys.
Oceanogr.,	45,	1302-1324,	doi:10.1175/JPO-D-14-
0119.1

Mean

	is	a	measure	of	the	uncertainty,	or	of	our	capability	of
estimating	the	mean	value	of	 .
s.e.[ ]X¯ ¯¯̄

x

http://dx.doi.org/10.1175/JPO-D-14-0119.1


Example

Agulhas	current	boundary	transport	from	Beal,	L.	M.	and	S.	Elipot,
Broadening	not	strengthening	of	the	Agulhas	Current	since	the	early	1990s,	Nature,
540,	570573,	doi:10.1038/nature19853

http://dx.doi.org/10.1038/nature19853


Depending	on	your	data,	your	point	of	view,	and	your	interests,	the
mean	and	the	variance	may	tell	you	a	lot,	or	little,	about	your	data.



Depending	on	your	data,	your	point	of	view,	and	your	interests,	the
mean	and	the	variance	may	tell	you	a	lot,	or	little,	about	your	data.
Thus,	you	may	want	to	look	at	the	frequency	distribution	plot,	or
histogram,	which	is	a	count	of	your	data	values	in	a	number	of

discrete	intervals.



Histogram

There	is	no	general	rule	(only	recommendations)	on	how	to	choose
the	size	of	the	bins	or	the	number	of	bins	to	be	used.	



Histogram

There	is	no	general	rule	(only	recommendations)	on	how	to	choose
the	size	of	the	bins,	or	the	number	of	bins	to	be	used.	



Histogram

The	frequency	of	occurences	of	a	given	value	 	is	quantity
derived	from	 	and	can	be	itself	estimated.	The	red	line	in	this	plot
shows	a	kernel	estimate	of	the	histogram	(see	practical	session	this
afternoon).

x = a
x



But	the	overall	values	of	 	still
depend	on	the	width	 	of	the	bins.
See	this	example	with	  and 

.

Probability	function

Let's	consider	the	probability,	or	relative	count	of	occurences,	to
obtain	a	value	 	in	the	interval	 .	This	defines	a
probability	function:

X [ , ]xk−1 xk

( ≤ X ≤ ) = = , 	count	in	[ , ]P ∗ xk−1 xk P ∗
k

ck

N
ck xk−1 xk

= 1, k:	interval	index∑
k

P ∗k

P ∗k
ΔX
ΔX = 10

ΔX = 5



PDF	and	CFD

Let's	consider	instead	the	discrete	probability	density	function,	or
PDF:

P ( ≤ X ≤ ) = = , ΔX = −xk−1 xk Pk
ck

NΔX
xk xk−1



PDF	and	CFD

Let's	consider	instead	the	discrete	probability	density	function,	or
PDF:

and	the	discrete	cumulative	(probability)	distribution	function,	or
CDF:

P ( ≤ X ≤ ) = = , ΔX = −xk−1 xk Pk
ck

NΔX
xk xk−1

F ( ) = ( ≤ X ≤ ) = (X ≤ ) =xk P ∗ x0 xk P ∗ xk ∑
i≤k

P ∗i



PDF	and	CFD

Let's	consider	instead	the	discrete	probability	density	function,	or
PDF:

and	the	discrete	cumulative	(probability)	distribution	function,	or
CDF:

Since	all	the	values	 	are	contained	between	 	and	 :

P ( ≤ X ≤ ) = = , ΔX = −xk−1 xk Pk
ck

NΔX
xk xk−1

F ( ) = ( ≤ X ≤ ) = (X ≤ ) =xk P ∗ x0 xk P ∗ xk ∑
i≤k

P ∗i

X min[X] max[X]

P (min[X] ≤ X ≤ max[X])

F (max[X])

=

=

1 or ΔX = ( )ΔX = 1∑
k

Pk
N

NΔX

1



PDF	and	CFD

The	overall	values	of	the	PDF	and	CDF	do	not	depend	on	the	bin
width.	However,	their	resolution	(or	detailed	shapes)	do.



PDF	and	CDF

As	one	reduces	the	size	of	the	bins,	 ,	the	continuous	PDF
and	CDF	are	approximated:

with	the	property

ΔX→ 0

P (x ≤ X ≤ x+ΔX)⟶ p(x) =
df(x)
dx

F (x) = P (X ≤ x)ΔX⟶ f(x) = p( ) d∫ x

−∞
x′ x′

ΔX = 1⟶ p(x) dx = f(+∞) − f(−∞) = 1 − 0 = 1∑
k

Pk ∫ +∞
−∞



PDF	and	statistics

We	can	now	give	some	formal	definitions:

The	last	expression	defines	 	the	 -th	central	moment	of	 .

μx

μn

≡

≡

xp(x) dx, ≡ (x− p(x) dx∫ +∞
−∞

σ2x ∫ +∞
−∞

μx)2

(x− p(x) dx∫ +∞
−∞

μx)n

(x)μn n x



PDF	and	statistics

We	can	now	give	some	formal	definitions:

The	last	expression	defines	 	the	 -th	central	moment	of	 .

The	discrete	equivalent	is

μx

μn

≡

≡

xp(x) dx, ≡ (x− p(x) dx∫ +∞
−∞

σ2x ∫ +∞
−∞

μx)2

(x− p(x) dx∫ +∞
−∞

μx)n

(x)μn n x

≡ E[(X − ]μn μx)n



PDF	and	statistics

We	can	now	give	some	formal	definitions:

The	last	expression	defines	 	the	 -th	central	moment	of	 .

The	discrete	equivalent	is

The	second	central	moment	 	is	the	variance,	by	definition.	The
mean	is	the	first	moment	about	the	origin	( ),	that	is	

μx

μn

≡

≡

xp(x) dx, ≡ (x− p(x) dx∫ +∞
−∞

σ2x ∫ +∞
−∞

μx)2

(x− p(x) dx∫ +∞
−∞

μx)n

(x)μn n x

≡ E[(X − ]μn μx)n

μ2
0

= (x− 0)p(x) dxμx ∫ +∞−∞



3rd	moment:	skewness

The	third	normalized	central	moment	is	called	the	skewness.	It
describes	the	tendency	for	an	asymmetry	between	positive
excursions	and	negative	excursions	of	the	PDF:

One	(biased)	estimator	is

Positive SkewNegative Skew

≡ =γx
μ3

(μ2)3/2
μ3

(σ2x )3/2

≡γ̂x
( −1

N
∑N

n=1 Xn X
¯ ¯¯̄ )3

[ ( − ]1
N

∑N
n=1 Xn X

¯ ¯¯̄ )2
3/2



4th	moment:	kurtosis

The	fourth	normalized	central	moment	is	called	the	kurtosis.	It
describes	the	peakedness	(concentration	near	 ),	or	a	tendency	for
long	tails	(concentration	far	from	 ):

One	(biased)	estimator	is

Because	the	kurtosis	of	a	normal,	or	Gaussian,	distribution	is	equal
to	 ,	often	the	excess	kurtosis	 	is	considered.	See	Moors	(1986),
“The	Meaning	of	Kurtosis:	Darlington	Reexamined”.

μx
μx

≡ =κx
μ4

(μ2)2
μ4

(σ2x)2

≡κ̂x
( −1

N
∑N

n=1 Xn X
¯ ¯¯̄ )4

[ ( − ]1
N

∑N
n=1 Xn X

¯ ¯¯̄ )2
4/2

3 − 3κx



Illustration	of	Kurtosis

Distributions	corresponding	to	different	values	of	excess	kurtosis.

Positive	excess	kurtosis	corresponds	to	long	tails	and	peakedness.



Kurtosis:	example

Hughes	et	al.	(2010)	Identification	of	jets
and	mixing	barriers	from	sea	level	and
vorticity	measurements	using	simple
statistics

They	used	the	statistics	and	PDF
of	sea	level	anomalies	and	derived
relative	vorticity	to	show	that
strong	oceanic	jets	tend	to	be
identified	by	a	zero	contour	in
skewness	coinciding	with	a	low
value	of	kurtosis.



Why	is	this	useful?

I	think	that	plotting	the	histogram	of	your	data,	and	further
estimating	in	detail	its	PDF,	gives	you	a	holistic,	or	global	view,	of
the	data	population	from	which	your	sample	is	drawn.	Maybe	you
will	find	that	the	estimated	PDF	of	a	sample	on	a	given	day	is
different	from	the	estimated	PDF	on	another	day	...



Why	is	this	useful?

I	think	that	plotting	the	histogram	of	your	data,	and	further
estimating	in	detail	its	PDF,	gives	you	a	holistic,	or	global	view,	of
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will	find	that	the	estimated	PDF	of	a	sample	on	a	given	day	is
different	from	the	estimated	PDF	on	another	day	...

It	also	allows	you	to	answer	questions	such	as:	what	is	the	most
probable	value	of	the	data?	How	often	do	we	observe	extreme
values?	etc.



Why	is	this	useful?

I	think	that	plotting	the	histogram	of	your	data,	and	further
estimating	in	detail	its	PDF,	gives	you	a	holistic,	or	global	view,	of
the	data	population	from	which	your	sample	is	drawn.	Maybe	you
will	find	that	the	estimated	PDF	of	a	sample	on	a	given	day	is
different	from	the	estimated	PDF	on	another	day	...

It	also	allows	you	to	answer	questions	such	as:	what	is	the	most
probable	value	of	the	data?	How	often	do	we	observe	extreme
values?	etc.

In	addition,	the	knowledge	of	your	data	distribution,	and/or	a
choice	of	a	model	for	your	data	distribution	will	allow	you	to	define
confidence	intervals	for	your	estimated	parameters,	and	to	proceed
to	conduct	hypothesis	testing	in	your	research.



Why	is	this	useful?

I	think	that	plotting	the	histogram	of	your	data,	and	further
estimating	in	detail	its	PDF,	gives	you	a	holistic,	or	global	view,	of
the	data	population	from	which	your	sample	is	drawn.	Maybe	you
will	find	that	the	estimated	PDF	of	a	sample	on	a	given	day	is
different	from	the	estimated	PDF	on	another	day	...

It	also	allows	you	to	answer	questions	such	as:	what	is	the	most
probable	value	of	the	data?	How	often	do	we	observe	extreme
values?	etc.

In	addition,	the	knowledge	of	your	data	distribution,	and/or	a
choice	of	a	model	for	your	data	distribution	will	allow	you	to	define
confidence	intervals	for	your	estimated	parameters,	and	to	proceed
to	conduct	hypothesis	testing	in	your	research.

Before	looking	at	this,	we	need	to	review	the	theory	of	various
probability	distribution	functions.



But	first	an	example

Animation	(#joyplot)	by	Gavin	Schmidt	showing	global	temperature
distribution	in	10-yr	windows,	see	his	blog	post	on	realclimate.org.
Data	from	the	NASA	GISS	Surface	Temperature	Analysis
(GISTEMP)	dataset.

https://twitter.com/ClimateOfGavin
http://www.realclimate.org/index.php/archives/2017/07/joy-plots-for-climate-change/#more-20524
https://data.giss.nasa.gov/gistemp/


3.	Common	Distributions



z = rand(1000,1);x1 = -1; x2 = 2;
x = (x2-x1)*z + x1;

The	uniform	distribution

A	random	variable	 	that	is	uniformly	distributed	between	 	and	
	has	for	PDF:

The	mean	of	this	distribution	is	 	and	its	standard
deviation	is	

x x1
x2

p(x) =

=

,
1
−x2 x1
0,

≤ x ≤x1 x2

	otherwise

( + )/2x1 x2
( − )/(2 )x2 x1 3–√

= 0.5, = = 0.8660μx σx
2 − −1

2 3)(√



The	normal	distribution	(or	Gaussian)

A	random	variable	 	that	is	normally	distributed	with	mean	 	and
standard	deviation	 	has	for	PDF:

x μx
σx

p(x) = exp[− ] ≡ N ( , )
1

σx 2π
−−√

(x− μx)2

2σ2x
μx σx



The	normal	distribution	(or	Gaussian)

A	random	variable	 	that	is	normally	distributed	with	mean	 	and
standard	deviation	 	has	for	PDF:

If	 	then	the	variable	

Hereafter,	 	will	mean	"distributed	like".

x μx
σx

p(x) = exp[− ] ≡ N ( , )
1

σx 2π
−−√

(x− μx)2

2σ2x
μx σx

x ∼ N ( , )μx σx z = ∼ N (0, 1)
x− μx
σx

∼



The	normal	distribution	(or	Gaussian)

A	random	variable	 	that	is	normally	distributed	with	mean	 	and
standard	deviation	 	has	for	PDF:

If	 	then	the	variable	

Hereafter,	 	will	mean	"distributed	like".

In	Matlab,	the	following	generates	a	data	vector	 	containing	1000
samples	from	a	r.v.	 ,	and	a	data	vector	 	from	a	r.v.	

z = randn(1000,1);
x = 1.35*z + 2.1;

x μx
σx

p(x) = exp[− ] ≡ N ( , )
1

σx 2π
−−√

(x− μx)2

2σ2x
μx σx

x ∼ N ( , )μx σx z = ∼ N (0, 1)
x− μx
σx

∼

z
∼ N (0, 1) x

∼ N (2.1, 1.35)



The	normal	distribution

The	red	curve	is	the	theoretical	normal	PDF	 .	The
histogram	is	computed	from	a	sample	of	size	 .

N (2.1, 1.35)
N = 1000



The	normal	distribution

The	normal	distribution	is	of	particular	importance	because	of	the
central	limit	theorem	which	asserts	roughly	that	the	normal
distribution	is	the	result	of	the	sum	of	a	large	number	of
independent	random	variable	acting	together.



The	normal	distribution

The	normal	distribution	is	of	particular	importance	because	of	the
central	limit	theorem	which	asserts	roughly	that	the	normal
distribution	is	the	result	of	the	sum	of	a	large	number	of
independent	random	variable	acting	together.

To	be	more	specific,	let	 	be	 	independent
r.v.	with	individual	means	 	and	variances	 .	Now	consider	the
new	r.v.	

The	central	limit	theorem	states	that,	as	 ,	 	will	be
normally	distributed	with	mean	 	and	variance	 .
In	practice,	the	CLT	is	used	for	 	"large".

, ,… , ,…,x1 x2 xi xN N
μi σ2i

x = + +…+ .a1x1 a2x2 aN xN

N → +∞ x
∑k akμk ∑k a

2
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The	normal	distribution

The	normal	distribution	is	of	particular	importance	because	of	the
central	limit	theorem	which	asserts	roughly	that	the	normal
distribution	is	the	result	of	the	sum	of	a	large	number	of
independent	random	variable	acting	together.

To	be	more	specific,	let	 	be	 	independent
r.v.	with	individual	means	 	and	variances	 .	Now	consider	the
new	r.v.	

The	central	limit	theorem	states	that,	as	 ,	 	will	be
normally	distributed	with	mean	 	and	variance	 .
In	practice,	the	CLT	is	used	for	 	"large".

In	fact,	we	have	already	used	the	central	limit	theorem	...

, ,… , ,…,x1 x2 xi xN N
μi σ2i

x = + +…+ .a1x1 a2x2 aN xN

N → +∞ x
∑k akμk ∑k a

2
k
σ2
k

N



The	normal	distribution	and	the	CLT

Recall	that	the	sample	mean	of	the	record	 	is
defined	as

Here,	 	can	be	seen	as	a	new	r.v.	which	is	the	sum	of	individual	r.v.
(for	which	we	have	only	one	value)	with	the	same	population	mean	

,	and	same	population	variance	 .

, ,… ,X1 X2 XN

= = ( ) + ( ) +…+ ( )X
¯ ¯¯̄ 1

N
∑
n=1

N

Xn

1
N

X1
1
N
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1
N

XN
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The	normal	distribution	and	the	CLT

Recall	that	the	sample	mean	of	the	record	 	is
defined	as

Here,	 	can	be	seen	as	a	new	r.v.	which	is	the	sum	of	individual	r.v.
(for	which	we	have	only	one	value)	with	the	same	population	mean	

,	and	same	population	variance	 .

Hence,	the	CLT	states	that,	for	 	large	enough,	 	is	normally
distributed	with	mean	 	and
variance	 ,	where	this
last	result	was	given	previously	without	explanation.

, ,… ,X1 X2 XN

= = ( ) + ( ) +…+ ( )X
¯ ¯¯̄ 1

N
∑
n=1

N

Xn

1
N

X1
1
N

X2
1
N

XN

X
¯ ¯¯̄

μx σ2x

N X
¯ ¯¯̄

(1/N ) = (N/N ) =∑N
n=1 μx μx μx

(1/N = (N/ ) = (1/N )∑N
n=1 )2σ2x N 2 σ2x σ2x



The	 	distribution

Let	 	be	 	independent	r.v.	 .	Let	a	new	r.v.
defined	as

χ2n

, ,… ,z1 z2 zn n ∼ N (0, 1)

= + +…+χ2 z21 z22 z2n



The	 	distribution

Let	 	be	 	independent	r.v.	 .	Let	a	new	r.v.
defined	as

It	is	said	that	this	r.v.	is	a	"chi-squared"	variable	with	 	degrees	of
freedom	(DOF).

χ2n

, ,… ,z1 z2 zn n ∼ N (0, 1)

= + +…+χ2 z21 z22 z2n

n



The	 	distribution

Let	 	be	 	independent	r.v.	 .	Let	a	new	r.v.
defined	as

It	is	said	that	this	r.v.	is	a	"chi-squared"	variable	with	 	degrees	of
freedom	(DOF).	Such	r.v.	has	for	PDF:

The	mean	of	this	distribution	is	 	and	its	variance	is	 .

χ2n

, ,… ,z1 z2 zn n ∼ N (0, 1)

= + +…+χ2 z21 z22 z2n

n

p(x) = ≡ (n)	or	
exp(− )x −1
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x
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The	 	distribution

Let	 	be	 	independent	r.v.	 .	Let	a	new	r.v.
defined	as

It	is	said	that	this	r.v.	is	a	"chi-squared"	variable	with	 	degrees	of
freedom	(DOF).	Such	r.v.	has	for	PDF:

The	mean	of	this	distribution	is	 	and	its	variance	is	 .

Examples	of	 	variables	are	power	spectral	density	function
estimates	(see	Lecture	4	on	time	series	analysis)	or	variance
estimates.	The	sample	variance	of	 	is	

χ2n

, ,… ,z1 z2 zn n ∼ N (0, 1)

= + +…+χ2 z21 z22 z2n

n

p(x) = ≡ (n)	or	
exp(− )x −1

n

2
x
2

Γ(n/2)2
n

2

χ2 χ2n

n 2n

χ2

x ∼ N ( , )μx σx

∼ (N − 1)s2x
σ2x
N−1χ
2



The	 	distribution

In	this	example,	the	red	curve	is	the	theoretical	 	PDF	for	 .
The	histogram	is	computed	from	a	sample	of	size	 .

χ2n

χ2n n = 14
N = 1000



The	F	distribution

If	 	and	 	then	the	following	variable

is	 	distributed	with	 	and	 	degrees	of	freedom.	The
mathematical	expression	for	this	distribution	is	very	complicated
and	not	very	useful	here,	see	reference	[1].

The	mean	value	of	the	 	distribution	is	 	for	 	and
its	variance	is

The	 	distribution	arises	as	an	example	when	testing	for	the
equality	of	two	population	variances	(see	practical	this	afternoon).

x ∼ χ2n y ∼ χ2m

∼ F (n,m)
x/n
y/m

F n m

F m/(m− 2) m > 2

	for	m > 4
2 (n+m− 2)m2

n(m− 2 (m− 4))2

F
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The	Student's	 	distribution

Let	 	and	 	be	two	independent	r.v.	with	 	and	 .
Let	be	a	new	r.v.	defined	as

It	is	said	that	this	r.v.	is	a	Student's	 	variable	with	 	degrees	of
freedom	(DOF).

t

y z y ∼ χ2n z ∼ N (0, 1)

t =
z

y

n

−−√
t n



The	Student's	 	distribution

Let	 	and	 	be	two	independent	r.v.	with	 	and	 .
Let	be	a	new	r.v.	defined	as

It	is	said	that	this	r.v.	is	a	Student's	 	variable	with	 	degrees	of
freedom	(DOF).	Such	r.v.	has	for	PDF:

The	mean	is	 	for	 	and	the	variance	is	 	for	 .

An	example	of	 	distributed	r.v.	is	the	estimate	of	the	mean	of	a
population	with	unknown	variance,	as	we	will	see	later.

t

y z y ∼ χ2n z ∼ N (0, 1)

t =
z

y

n

−−√
t n

p(x) = ≡ t(n)	or	
Γ[(n+ 1)/2]
Γ(n/2)πn−−−√

[1 + ]x2

n

n+1
2

tn

0 n > 0 n

n−2 n > 2

t



The	Student's	 	distribution

In	this	example,	the	red	curve	is	the	theoretical	 	PDF	for	 .
The	histogram	is	computed	from	a	sample	of	size	 .	The
black	curve	is	the	theoretical	PDF	 .

t

tn n = 10
N = 1000

N (0, 1)



The	Gamma	( )	distribution	family

In	fact,	the	 	distribution	and	the	exponential	distribution	are	two
particular	cases	of	the	Gamma	( )	distribution	family.	A	random
variable	 	that	is	Gamma	distributed	with	parameters	 	and	 	has
for	PDF:

with	the	 	function	defined	as

	exponential	distribution

	 	distribution

Γ

χ2n
Γ

x α β

p(x) = , β > 0; 0 ≤ x ≤ +∞
exp[−x/β]xα−1

Γ(α)βα

Γ

Γ(α)

Γ(n)
Γ(α)

=

=
=

exp(− ) d∫ +∞
0

x′α−1 x′ x′

(n− 1)! for	n	integer
(α− 1)Γ(α− 1)	for	α	continuous	with	Γ(1) = 1

α = 1⟶

α = , β = 2⟶n
2 χ2n



4.	Uncertainties,	errors
and	hypothesis	testing



Probability	statements

We	use	distributions	to	make	probability	statements	about	our	r.v.
estimates.



Probability	statements

We	use	distributions	to	make	probability	statements	about	our	r.v.
estimates.	It	is	useful	to	consider	the	following.	For	any	given	PDF	

,	and	associated	CDF	 ,	of	the	variable	 ,	let's	denote	 	the
value	that	corresponds	to	 ,	that	is

BEWARE	that	this	the	convention	used	here.	It	is	notably	different
in	Matlab	where	icdf('normal',1- ,0,1)	returns	the	value	

p(z) f(z) z zα
f(z) = 1 − α

f( ) = p(z) dz = Prob[z ≤ ] = 1 − αzα ∫ zα

−∞
zα

α zα



Confidence	intervals

PDFs	are	used	to	derive	confidence	intervals	(CI),	the	interpretation
of	which	is	subtle.	What	is	a	CI	for	you?



Confidence	intervals

PDFs	are	used	to	derive	confidence	intervals	(CI),	the	interpretation
of	which	is	subtle.	What	is	a	CI	for	you?

Given	an	estimate	 	of	a	quantity	 ,	and	a	chosen	significance	level	
,	we	construct	an	interval	with	lower	bound	 	and	upper	bound	
	so	that	this	interval	is	expected	to	cover	the	true,	unknown,	but

fixed	value	of	 ,	with	probability	 .

ϕ̂ ϕ
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ϕU

ϕ 1 − α



Confidence	intervals

PDFs	are	used	to	derive	confidence	intervals	(CI),	the	interpretation
of	which	is	subtle.	What	is	a	CI	for	you?

Given	an	estimate	 	of	a	quantity	 ,	and	a	chosen	significance	level	
,	we	construct	an	interval	with	lower	bound	 	and	upper	bound	
	so	that	this	interval	is	expected	to	cover	the	true,	unknown,	but

fixed	value	of	 ,	with	probability	 .

In	other	words,	if	we	could	repeat	the	estimation	and	calculation	of
the	CI	many	times,	we	can	expect	that	the	true	unknown	parameter	
	is	covered	by	the	calculated	CI,	95	out	of	100	times.
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ϕ



Confidence	intervals

PDFs	are	used	to	derive	confidence	intervals	(CI),	the	interpretation
of	which	is	subtle.	What	is	a	CI	for	you?

Given	an	estimate	 	of	a	quantity	 ,	and	a	chosen	significance	level	
,	we	construct	an	interval	with	lower	bound	 	and	upper	bound	
	so	that	this	interval	is	expected	to	cover	the	true,	unknown,	but

fixed	value	of	 ,	with	probability	 .

In	other	words,	if	we	could	repeat	the	estimation	and	calculation	of
the	CI	many	times,	we	can	expect	that	the	true	unknown	parameter	
	is	covered	by	the	calculated	CI,	95	out	of	100	times.

There	is	no	probability	statement	about	 ,	only	about	 	and	
.

ϕ̂ ϕ
α ϕL
ϕU

ϕ 1 − α

ϕ

ϕ ϕ̂
[ , ]ϕL ϕU



Confidence	intervals

As	a	concrete	example,	consider	the	sample	mean	 	of	
.

We	stated	earlier	that	 .	As	such,	we	can	state
that	the	new	"transformed"	variable

and	that	we	can	find	two	 	values	such	that

X
¯ ¯¯̄

x ∼ N ( , )μx σx

∼ N ( , / )X
¯ ¯¯̄

μx σx N
−−√

z = ∼ N (0, 1)
−X¯ ¯¯̄ μx

/σx N
−−√

z

Prob[ < ≤ ] = 1 − αz1−α/2
−X¯ ¯¯̄ μx

/σx N
−−√

zα/2



Confidence	intervals:	normal	case

Since,	the	normal	distribution	is	symmetric	around	zero,

Prob[ < ≤ ] = 1 − αz1−α/2
−X¯ ¯¯̄ μx

/σx N
−−√

zα/2

= −z1−α/2 zα/2



Confidence	intervals:	normal	case

As	a	result,	the	normalized	calculated	variable	 	is	such	that

with	 	probability.	After	rearranging,	we	can	state	that	the	true
mean	 	of	the	r.v.	 	is	such	that

with	a	confidence	of	 .

In	common	parlance,	a	95%	CI	for	 	is

z

− < z = ≤zα/2
−X¯ ¯¯̄ μx

/σx N
−−√

zα/2

1 − α
μx x

− ≤ < +X
¯ ¯¯̄ σxzα/2

N
−−√

μx X
¯ ¯¯̄ σxzα/2

N
−−√

100(1 − α)%

μx

[ − , + ]X
¯ ¯¯̄ σxzα/2

N
−−√

X
¯ ¯¯̄ σxzα/2

N
−−√



Confidence	intervals:	normal	case

Typical	intervals	used	are:

Before	the	advent	of	advanced	softwares,	people	relied	on	statistical
tables	for	the	values	of	 ,	such	as	the	ones	found	in	the	Appendices
of	references	[1],[2],[3],[6].

90%	CI : α = 0.1⟶ = 1.6449zα/2

95%	CI : α = 0.05⟶ = 1.9600zα/2

99%	CI : α = 0.01⟶ = 2.5758zα/2

z
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Confidence	intervals:	normal	case

Example	from	Bendat	and	Piersol	(2011):	
95%	CI : α = 0.05⟶ α/2 = 0.0250



Confidence	intervals:	normal	case;	example:

Using	a	CTD	record	of	temperature	at	24	Hz,	we	estimate	the	mean
temperature	near	70	db	pressure	level	by	averaging	data	points
within	.5	db	of	70	db	(falling	rate	is	1-2	m/s),	 .	We	find	

.	From	the	specification	sheet	of	the	CTD	911	Plus,
the	accuracy	of	the	temperature	sensor	is	 ,	which	we	interpret
as	being	the	random	error	or	std	of	 ,	i.e.	 ,	ignoring	a	possible
bias.

N = 11
= 19.21359T
¯ ¯¯̄

0.001
T σT
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Confidence	intervals:	normal	case;	example:

Using	a	CTD	record	of	temperature	at	24	Hz,	we	estimate	the	mean
temperature	near	70	db	pressure	level	by	averaging	data	points
within	.5	db	of	70	db	(falling	rate	is	1-2	m/s),	 .	We	find	

.	From	the	specification	sheet	of	the	CTD	911	Plus,
the	accuracy	of	the	temperature	sensor	is	 ,	which	we	interpret
as	being	the	random	error	or	std	of	 ,	i.e.	 ,	ignoring	a	possible
bias.	We	use	 ,	and	based	on	the
previous	formula,	the	95%	CI	for	the	true	mean	 	is:

Alternatively,	once	can	state	that	the	estimate	of	the	mean	with	95%
uncertainty	is

N = 11
= 19.21359T
¯ ¯¯̄

0.001
T σT

( − )/( / )	 ∼ N (0, 1)T
¯ ¯¯̄

μT σT N
−−√

μT

19.21359 − ≤ < 19.21359 +
0.001 × 1.96

11−−√
μT

0.001 × 1.96

11−−√

⇒ 19.21300 ≤ < 19.21418μT

= 19.21359 ± 0.00059μT
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Confidence	intervals:	 	case

Now	imagine	that	you	obtain	the	data	from	the	previous	example
but	do	not	know	the	specification	of	the	sensor	used,	that	is	 .
Instead,	you	can	consider	the	sample	standard	deviation	 	as	an
estimate	of	the	unknown	 .

t

σT
sT

σT



Confidence	intervals:	 	case

Now	imagine	that	you	obtain	the	data	from	the	previous	example
but	do	not	know	the	specification	of	the	sensor	used,	that	is	 .
Instead,	you	can	consider	the	sample	standard	deviation	 	as	an
estimate	of	the	unknown	 .	It	can	be	shown	(not	obvious),	that
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sT

σT
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Confidence	intervals:	 	case

Now	imagine	that	you	obtain	the	data	from	the	previous	example
but	do	not	know	the	specification	of	the	sensor	used,	that	is	 .
Instead,	you	can	consider	the	sample	standard	deviation	 	as	an
estimate	of	the	unknown	 .	It	can	be	shown	(not	obvious),	that

Thus,	a	 %	CI	for	the	true	mean	 	is:

where	 	is	the	value	of	the	 	variable	such	that

The	 	distribution	is	symmetric	like	the	normal	distribution	so	that	

t

σT
sT

σT

	 ∼ t(N − 1)
−T¯ ¯¯̄ μT

/sT N
−−√

100(1 − α) μT

[ − ≤ < + ]T
¯ ¯¯̄ sT tN−1;α/2

N
−−√

μT T
¯ ¯¯̄ sT tN−1;α/2

N
−−√

tN−1;α/2 tN−1

Prob [t ≤ ] = 1 − 	or	 Prob [t > ] =tN−1;α/2
α

2
tN−1;α/2

α

2

t
= −tN;1−β tN;β



Confidence	intervals:	 	case

Going	back	to	our	CTD	example,	we	still	have	 	but
now	calculate	 .	Since	 ,	the	95%	CI
for	 	becomes:

Alternatively	once	can	state	that	the	estimate	of	the	mean	with	95%
uncertainty	is

t

= 19.21359T
¯ ¯¯̄

= 0.02277sT = 2.0227t40−1;0.05/2
μT

19.21359 − ≤ < 19.21359 +
0.02277 × 2.0227

1–√
μT

0.02277 × 2.0227

11−−√

⇒ 19.19829 ≤ < 19.22889μT

= 19.21359 ± 0.01530μT



Confidence	intervals:	 	case

Going	back	to	our	CTD	example,	we	still	have	 	but
now	calculate	 .	Since	 ,	the	95%	CI
for	 	becomes:

Alternatively	once	can	state	that	the	estimate	of	the	mean	with	95%
uncertainty	is

Previously,	we	stated	that

So	what	is	the	right	answer?

t

= 19.21359T
¯ ¯¯̄

= 0.02277sT = 2.0227t40−1;0.05/2
μT

19.21359 − ≤ < 19.21359 +
0.02277 × 2.0227

1–√
μT

0.02277 × 2.0227

11−−√

⇒ 19.19829 ≤ < 19.22889μT

= 19.21359 ± 0.01530μT

= 19.21359 ± 0.00059μT



Confidence	intervals:	 	case

Going	back	to	our	CTD	example,	we	still	have	 	but
now	calculate	 .	Since	 ,	the	95%	CI
for	 	becomes:

Alternatively	once	can	state	that	the	estimate	of	the	mean	with	95%
uncertainty	is

Previously,	we	stated	that

So	what	is	the	right	answer?	It	is	arguable	...

t

= 19.21359T
¯ ¯¯̄

= 0.02277sT = 2.0227t40−1;0.05/2
μT

19.21359 − ≤ < 19.21359 +
0.02277 × 2.0227

1–√
μT

0.02277 × 2.0227

11−−√

⇒ 19.19829 ≤ < 19.22889μT

= 19.21359 ± 0.01530μT

= 19.21359 ± 0.00059μT



To	attempt	to	answer	this	question,	let's	look	at	the	data.	The	blue
curve	is	the	24	Hz	temperature	data,	and	the	red	curve	and	shading
show	the	1	db	bin	averages	and	95%	CI	using	the	 	distribution.t



Instrumental	vs	sampling/model	errors

When	we	use	 	as	an	estimate	of	the	temperature	at	70	db,	we
assumed	that	the	 	records	of	temperature	at	24	Hz	had	the
same	expectation	and	variance.

T
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N = 11



Instrumental	vs	sampling/model	errors

When	we	use	 	as	an	estimate	of	the	temperature	at	70	db,	we
assumed	that	the	 	records	of	temperature	at	24	Hz	had	the
same	expectation	and	variance.

However,	we	know	based	on	our	oceanographic	knowledge	that	the
temperature	is	not	necessarily	a	constant	with	depth.	Here,	the
obvious	temperature	gradient	with	depth	makes	us	think	that	the
expected	temperature	at	69.5	db	is	not	the	same	as	at	70.5	db.
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Instrumental	vs	sampling/model	errors

When	we	use	 	as	an	estimate	of	the	temperature	at	70	db,	we
assumed	that	the	 	records	of	temperature	at	24	Hz	had	the
same	expectation	and	variance.

However,	we	know	based	on	our	oceanographic	knowledge	that	the
temperature	is	not	necessarily	a	constant	with	depth.	Here,	the
obvious	temperature	gradient	with	depth	makes	us	think	that	the
expected	temperature	at	69.5	db	is	not	the	same	as	at	70.5	db.

Thus,	when	we	calculate	an	arithmetic	average	( )	of	temperature
that	is	a	function	depth,	it	is	an	estimate	of	a	temperature	quantity
that	is	variable	because	of	1)	the	accuracy	of	the	sensor,	and	2)	the
varying	expectation	value.
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Instrumental	vs	sampling/model	errors

When	we	use	 	as	an	estimate	of	the	temperature	at	70	db,	we
assumed	that	the	 	records	of	temperature	at	24	Hz	had	the
same	expectation	and	variance.

However,	we	know	based	on	our	oceanographic	knowledge	that	the
temperature	is	not	necessarily	a	constant	with	depth.	Here,	the
obvious	temperature	gradient	with	depth	makes	us	think	that	the
expected	temperature	at	69.5	db	is	not	the	same	as	at	70.5	db.

Thus,	when	we	calculate	an	arithmetic	average	( )	of	temperature
that	is	a	function	depth,	it	is	an	estimate	of	a	temperature	quantity
that	is	variable	because	of	1)	the	accuracy	of	the	sensor,	and	2)	the
varying	expectation	value.

Traditionally,	this	second	type	of	error	is	called	a	sampling	error	or
a	model	error,	which	adds	to	the	first	type	of	error	called
instrumental	error.
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Instrumental	vs	sampling/model	errors

When	we	use	 	as	an	estimate	of	the	temperature	at	70	db,	we
assumed	that	the	 	records	of	temperature	at	24	Hz	had	the
same	expectation	and	variance.

However,	we	know	based	on	our	oceanographic	knowledge	that	the
temperature	is	not	necessarily	a	constant	with	depth.	Here,	the
obvious	temperature	gradient	with	depth	makes	us	think	that	the
expected	temperature	at	69.5	db	is	not	the	same	as	at	70.5	db.

Thus,	when	we	calculate	an	arithmetic	average	( )	of	temperature
that	is	a	function	depth,	it	is	an	estimate	of	a	temperature	quantity
that	is	variable	because	of	1)	the	accuracy	of	the	sensor,	and	2)	the
varying	expectation	value.

Traditionally,	this	second	type	of	error	is	called	a	sampling	error	or
a	model	error,	which	adds	to	the	first	type	of	error	called
instrumental	error.

Part	of	the	analysis	of	your	data	is	to	understand,	or	model,	the
sources	or	variance	and	hence	of	errors	when	calculating	derived
quantities	such	as	mean,	variance	etc.

T
¯ ¯¯̄

N = 11

T
¯ ¯¯̄



Interlude:	modeling	signal	and	noise

Part	of	the	problem	of	choosing	the	appropriate	variance	to
estimate	errors	is	choosing	a	model	for	the	observations.	As	an
example,	the	measured	"process"	 	may	be	the	sum	of	a	given	signal
	plus	instrumental	noise	 .

x
y ε

x = y+ ε



Interlude:	modeling	signal	and	noise

Part	of	the	problem	of	choosing	the	appropriate	variance	to
estimate	errors	is	choosing	a	model	for	the	observations.	As	an
example,	the	measured	"process"	 	may	be	the	sum	of	a	given	signal
	plus	instrumental	noise	 .

If	the	signal	and	noise	independent,	then	the	total	variance	of	the
process	is
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Interlude:	modeling	signal	and	noise

Part	of	the	problem	of	choosing	the	appropriate	variance	to
estimate	errors	is	choosing	a	model	for	the	observations.	As	an
example,	the	measured	"process"	 	may	be	the	sum	of	a	given	signal
	plus	instrumental	noise	 .

If	the	signal	and	noise	independent,	then	the	total	variance	of	the
process	is

In	our	previous	example	of	the	CTD	profile,	the	sample	variance	of
the	measurements	was	likely	the	sum	of	the	instrumental	error	and
of	the	"error"	from	the	background	shear	of	temperature.	I	would
tend	to	choose	the	second	case	( 	distribution	with	unknown
variance)	to	derive	CIs.

x
y ε

x = y+ ε

Var[x]
σ2x

=
=
Var[y]
σ2y

+
+
Var[ε]
σ2ε

t



Confidence	intervals:	 	case

The	 	distribution	is	defined	for	positive	values	only,	and	is	not
symmetric:	

χ2n

Prob [ < ≤ ] = 1 − αχ2
n;1−α/2 χ2n χ2

n;α/2

χ2

≠ −χ2
n;1−β χ2

n;β



Confidence	intervals:	 	case	example

The	 	distribution	can	be	used	to	derive	CIs	for	variance	estimates.
It	can	be	shown	that	for	 	samples	drawn	from	a	normally
distributed	r.v.	 	with	variance	 ,	we	have

which	can	be	used	to	derive	 %	CI	for	variance	estimates	
	as

χ2n

χ2

N
x σ2x

∼
(N − 1)s2x

σ2x
χ2
N−1

100(1 − α)
s2x

≤ <
(N − 1)s2x
χ2
N−1;α/2

σ2
(N − 1)s2x
χ2
N−1;1−α/2



Hypothesis	testing

Confidence	intervals	are	particular	cases	of	hypothesis	testing,	a
case	of	data	analysis	that	occurs	frequently.	See	the	introduction	of
100	statistical	tests	by	G.	K.	Kanji	(see	reference	[5]).
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Hypothesis	testing

Confidence	intervals	are	particular	cases	of	hypothesis	testing,	a
case	of	data	analysis	that	occurs	frequently.	See	the	introduction	of
100	statistical	tests	by	G.	K.	Kanji	(see	reference	[5]).

Hypothesis	testing	does	not	consist	in	proving	or	disproving
hypotheses.	Just	like	we	will	never	know	the	true	value	of	a	r.v.,	we
will	never	prove	in	an	indeniable	fashion	that	an	hypothesis	is	true.
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Hypothesis	testing

Confidence	intervals	are	particular	cases	of	hypothesis	testing,	a
case	of	data	analysis	that	occurs	frequently.	See	the	introduction	of
100	statistical	tests	by	G.	K.	Kanji	(see	reference	[5]).

Hypothesis	testing	does	not	consist	in	proving	or	disproving
hypotheses.	Just	like	we	will	never	know	the	true	value	of	a	r.v.,	we
will	never	prove	in	an	indeniable	fashion	that	an	hypothesis	is	true.

Hypothesis	testing	consists	in	showing	that	an	hypothesis	cannot	be
supported	given	its	small	probability.	How	small	is	your	own	choice,
or	the	difference	between	getting	published	or	not	published,	or	a
stakeholder	taking	a	decision	or	action	or	inaction,	etc.
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Hypothesis	testing

Confidence	intervals	are	particular	cases	of	hypothesis	testing,	a
case	of	data	analysis	that	occurs	frequently.	See	the	introduction	of
100	statistical	tests	by	G.	K.	Kanji	(see	reference	[5]).

Hypothesis	testing	does	not	consist	in	proving	or	disproving
hypotheses.	Just	like	we	will	never	know	the	true	value	of	a	r.v.,	we
will	never	prove	in	an	indeniable	fashion	that	an	hypothesis	is	true.

Hypothesis	testing	consists	in	showing	that	an	hypothesis	cannot	be
supported	given	its	small	probability.	How	small	is	your	own	choice,
or	the	difference	between	getting	published	or	not	published,	or	a
stakeholder	taking	a	decision	or	action	or	inaction,	etc.

In	general,	the	hypothesis	we	are	trying	to	denouce,	decry,	etc,	is
one	with	no	change	(i.e.	 ,	"the	mean	temperature	today	is	the
same	as	yesterday"),	so	that	it	is	typically	called	the	null	hypothesis,

.	When	 	is	rejected	because	of	insufficient	probability,	we
accept	the	alternatice	hypothesis	 	(i.e.	 ,	"the	mean
temperature	today	is	different	from	yesterday").

a = b

H0 H0
H1 a ≠ b
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Hypothesis	testing

Step	1

Define	your	practical	problem	in	terms	of	simple	hypotheses,	a	null
hypothesis	and	an	alternate	hypothesis	that	typically	leads	to
action.	Decide	if	you	are	likely	to	conduct	a	one-tailed	or	two-tailed
test.



Hypothesis	testing

Step	1

Define	your	practical	problem	in	terms	of	simple	hypotheses,	a	null
hypothesis	and	an	alternate	hypothesis	that	typically	leads	to
action.	Decide	if	you	are	likely	to	conduct	a	one-tailed	or	two-tailed
test.

As	an	example,	a	null	hypothesis	is	that	the	population	mean	 	of	a
r.v.	 	is	equal	to	a	given	value	 	(maybe	 ).	Alternative	hypotheses
may	be	that	 	is	not	equal	to	 	(case	 ,	two-tailed	test),	or	that	
is	greater	or	smaller	than	 	(cases	 ,	one-tailed	tests).

μx
x μ0 0

μx μ0 1 μx
μ0 2, 3

1.

2.

3.

: =H0 μx μ0

: ≠H1 μx μ0
: =H0 μx μ0
: >H1 μx μ0

: =H0 μx μ0
: <H1 μx μ0



Hypothesis	testing

Step	2

Derive	a	statistic,	that	is	a	number,	that	can	be	calculated	from	your
data	and	your	assumptions,	typically	under	your	null	hypothesis	

.	Make	sure	that	this	number	is	going	to	be	different	when	 	is
true	or	when	 	is	true.
H0 H0

H1



Hypothesis	testing

Step	2

Derive	a	statistic,	that	is	a	number,	that	can	be	calculated	from	your
data	and	your	assumptions,	typically	under	your	null	hypothesis	

.	Make	sure	that	this	number	is	going	to	be	different	when	 	is
true	or	when	 	is	true.

Following	the	previous	example,	we	saw	that	if	 	is	normally
distributed	with	known	variance	 ,	then	the	statistic	

H0 H0
H1

x
σx

z = ∼ N (0, 1)
−X¯ ¯¯̄¯ μx

/σx N√



Hypothesis	testing

Steps	3	&	4

Choose	a	critical	region	for	your	test	statistic	and	a	significance
level	 	that	determine	the	size	of	your	critical	region.	Critical
regions	can	be	of	three	types;	right-sided	means	that	you	reject	
if	your	test	statistic	is	greater	than	or	equal	to	some	right	critical
value;	left-sided	you	get	it;	or	both-sided	so	that	you	reject	 	if
your	test	statistic	is	either	greater	than	or	equal	to	the	right	critical
value	or	less	than	or	equal	to	the	left	critical	value.

α
H0

H0



Hypothesis	testing

Steps	3	&	4:	example

Case	1:	

	is	outside	of	the	critical	region!	No	reason	to	reject	 	(i.e.	we
accept	that	the	mean	is	not	different	from	 )

Case	2:	

	is	in	the	critical	region	for	a	right-sided	test!	We	can	reject	 	(in
the	sense	that	the	mean	appears	larger	than	 )

Case	3:	

	is	outside	the	critical	region	for	a	left-sided	test!	No	reason	to
reject	 	(in	the	sense	that	it	mean	does	not	appear	to	be	less	than	

).

α = 0.05, : = 4,N = 9, = 4.6, = 1.0 → z = = 1.8H0 μ0 X
¯ ¯¯̄

σx
4.6 − 4

1/ 9–√

= −1.96 < z = 1.8 < = 1.96z1−0.05/2 z0.05/2

z H0
μ0

z = 1.8 > = 1.64z1−0.05

z H0
μ0

= −1.64 ≤ z = 1.8z0.05

z
H0

μ0



Hypothesis	testing

Please	see	the	book	by	G.	K.	Kanji,	100	Statistical	Tests,	(2006)!	It
is	very	handy	...



One	last	thing:	Error	propagation

We	saw	common	cases	where	the	statistics	were	 ,	 ,	or	 	r.v.
What	if	we	are	trying	to	assess	the	error	or	uncertainty	for	a	r.v.	
that	is	arbitrarily	function	of	 	variables	 	with	independent
random	errors	 	(maybe	the	RMS	error)?

x ∼ z t χ2

y
N xn

εxn

y = y( , ,… , )x1 x2 xN



One	last	thing:	Error	propagation

We	saw	common	cases	where	the	statistics	were	 ,	 ,	or	 	r.v.
What	if	we	are	trying	to	assess	the	error	or	uncertainty	for	a	r.v.	
that	is	arbitrarily	function	of	 	variables	 	with	independent
random	errors	 	(maybe	the	RMS	error)?

An	approximate	formula	for	"small"	errors	is

See	reference	[3].

x ∼ z t χ2

y
N xn

εxn

y = y( , ,… , )x1 x2 xN

≈ + +…+ε2y ( )∂y
∂x1

2

ε2x1 ( )∂y
∂x2

2

ε2x2 ( )∂y
∂xN

2

ε2xN
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Practical	session

Please	download	data	at	the	following	link:

Please	download	the	Matlab	code	at	the	following	link:

Make	sure	you	have	installed	and	tested	the	free	jLab	Matlab
toolbox	from	Jonathan	Lilly	at	www.jmlilly.net/jmlsoft.html

https://www.jmlilly.net/jmlsoft.html


Extra	slides



-test	for	two	population	means	(variances
unknown	and	unequal)

Following	test	#9	of	Kanji	(2006),	reference	[5]

The	test	statistic	is

which	is	used	to	test	 ,	so	that	 	with

t

t =
( − ) − ( − )X
¯ ¯¯̄
1 X
¯ ¯¯̄
2 μ1 μ2

( + )s21
n1

s22
n2

1
2

=μ1 μ2 t ∼ t(0, ν)

ν =

( + )s21
n1

s22
n2

2

+
s41

( − 1)n21 n1

s42

( − 1)n22 n2

file:///Users/selipot/Work/presentations/UCT2017/lectures/lecture1/index.html#references


Kolmogorov-Smirnov	test	for	distribution

The	Kolmogorov-Smirnov	test	compares	an	empirical	distribution
function	 	to	a	prescribed	normal	distribution	function	 	with
mean	 	and	standard	deviation	 .	It	considers	the	statistic

which	measures	the	maximum	distance	between	the	two
distribution	(as	seen	on	a	Q-Q	plot).

The	issue	is	that	this	test	is	too	conservative	when	the	mean	and	std
of	 	are	calculated	from	the	data.	An	alternative	test	is	called	the
Lilliefors	test,	which	is	more	stringent.	See	also	test	20	of	Kanji
(2006),	reference	[5]	for	another	test.

In	Matlab:

h = kstest(x); h = lillietest(x);

F̂ F
μ σ

D = | ( ) − F (μ,σ)|max
Xi

F̂ Xi

F

file:///Users/selipot/Work/presentations/UCT2017/lectures/lecture1/index.html#references

